| ||||||||||||||||||||||||||||||||||||||
| Standard atomic weightAr°(Cs) | ||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caesium (55Cs) has 41 knownisotopes, ranging inmass number from 112 to 152. Only one isotope,133Cs, is stable. The longest-livedradioisotopes are135Cs with a half-life of 1.33 million years,137
Cs with a half-life of 30.04 years and134Cs with a half-life of 2.0650 years. All other isotopes have half-lives less than 2 weeks, most under an hour.
Caesium is an abundantfission product (135 and 137 are directly produced) and various isotopes are of concern as such, see the sections below.
Beginning in 1945 with the commencement ofnuclear testing, caesium radioisotopes were released into theatmosphere, where caesium is absorbed readily into solution and is returned to the surface of the Earth as a component ofradioactive fallout. Once caesium enters the ground water, it is deposited on soil surfaces and removed from the landscape primarily by particle transport. As a result, the input function[clarification needed] of these isotopes can be estimated as a function of time.
| Nuclide [n 1] | Z | N | Isotopic mass(Da)[4] [n 2][n 3] | Half-life[1] | Decay mode[1] [n 4] | Daughter isotope [n 5][n 6] | Spin and parity[1] [n 7][n 8] | Isotopic abundance | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 8] | |||||||||||||||||||
| 112Cs | 55 | 57 | 111.950155(64)[5] | 490(30) μs | p (>99.74%) | 111Xe | 1+# | ||||||||||||
| α (<0.26%) | 108I | ||||||||||||||||||
| 113Cs | 55 | 58 | 112.9444285(92) | 16.94(9) μs | p | 112Xe | (3/2+) | ||||||||||||
| 114Cs | 55 | 59 | 113.941292(91) | 570(20) ms | β+ (91.1%) | 114Xe | (1+) | ||||||||||||
| β+, p (8.7%) | 113I | ||||||||||||||||||
| β+, α (0.19%) | 110Te | ||||||||||||||||||
| α (0.018%) | 110I | ||||||||||||||||||
| 115Cs | 55 | 60 | 114.93591(11)# | 1.4(8) s | β+ (99.93%) | 115Xe | 9/2+# | ||||||||||||
| β+, p (0.07%) | 114I | ||||||||||||||||||
| 116Cs | 55 | 61 | 115.93340(11)# | 700(40) ms | β+ (99.67%) | 116Xe | (1+) | ||||||||||||
| β+, p (0.28%) | 115I | ||||||||||||||||||
| β+, α (0.049%) | 112Te | ||||||||||||||||||
| 116mCs[n 9] | 100(60)# keV | 3.85(13) s | β+ (99.56%) | 116Xe | (7+) | ||||||||||||||
| β+, p (0.44%) | 115I | ||||||||||||||||||
| β+, α (0.0034%) | 112Te | ||||||||||||||||||
| 117Cs | 55 | 62 | 116.928617(67) | 8.4(6) s | β+ | 117Xe | 9/2+# | ||||||||||||
| 117mCs[n 9] | 150(80)# keV | 6.5(4) s | β+ | 117Xe | 3/2+# | ||||||||||||||
| 118Cs | 55 | 63 | 117.926560(14) | 14(2) s | β+ (99.98%) | 118Xe | 2(−)[6] | ||||||||||||
| β+, p (0.021%) | 117I | ||||||||||||||||||
| β+, α (0.0012%) | 114Te | ||||||||||||||||||
| 118m1Cs[6][n 9] | X keV | 17(3) s | β+ (99.98%) | 118Xe | (7−) | ||||||||||||||
| β+, p (0.021%) | 117I | ||||||||||||||||||
| β+, α (0.0012%) | 114Te | ||||||||||||||||||
| 118m2Cs[6][n 9] | Y keV | (6+) | |||||||||||||||||
| 118m3Cs[6][n 9] | 65.9 keV | IT | 118Cs | (3−) | |||||||||||||||
| 118m4Cs[6] | 125.9+X keV | 550(60) ns | IT | 118m1Cs | (7+) | ||||||||||||||
| 118m5Cs[6] | 195.2+X keV | <500 ns | IT | 118m4Cs | (8+) | ||||||||||||||
| 119Cs | 55 | 64 | 118.9223 77(15) | 43.0(2) s | β+ | 119Xe | 9/2+ | ||||||||||||
| β+, α (<2×10−6%) | 115Te | ||||||||||||||||||
| 119mCs[n 9] | 50(30)# keV | 30.4(1) s | β+ | 119Xe | 3/2+ | ||||||||||||||
| 120Cs | 55 | 65 | 119.920677(11) | 60.4(6) s | β+ | 120Xe | 2+ | ||||||||||||
| β+, α (<2×10−5%) | 116Te | ||||||||||||||||||
| β+, p (<7×10−6%) | 119I | ||||||||||||||||||
| 120mCs[n 9] | 100(60)# keV | 57(6) s | β+ | 120Xe | (7−) | ||||||||||||||
| β+, α (<2×10−5%) | 116Te | ||||||||||||||||||
| β+, p (<7×10−6%) | 119I | ||||||||||||||||||
| 121Cs | 55 | 66 | 120.917227(15) | 155(4) s | β+ | 121Xe | 3/2+ | ||||||||||||
| 121mCs | 68.5(3) keV | 122(3) s | β+ (83%) | 121Xe | 9/2+ | ||||||||||||||
| IT (17%) | 121Cs | ||||||||||||||||||
| 122Cs | 55 | 67 | 121.916108(36) | 21.18(19) s | β+ | 122Xe | 1+ | ||||||||||||
| β+, α (<2×10−7%) | 118Te | ||||||||||||||||||
| 122m1Cs | 45.87(12) keV | >1 μs | IT | 122Cs | 3+ | ||||||||||||||
| 122m2Cs | 140(30) keV | 3.70(11) min | β+ | 122Xe | 8− | ||||||||||||||
| 122m3Cs | 127.07(16) keV | 360(20) ms | IT | 122Cs | 5− | ||||||||||||||
| 123Cs | 55 | 68 | 122.912996(13) | 5.88(3) min | β+ | 123Xe | 1/2+ | ||||||||||||
| 123m1Cs | 156.27(5) keV | 1.64(12) s | IT | 123Cs | 11/2− | ||||||||||||||
| 123m2Cs | 252(6) keV | 114(5) ns | IT | 123Cs | (9/2+) | ||||||||||||||
| 124Cs | 55 | 69 | 123.9122474(98) | 30.9(4) s | β+ | 124Xe | 1+ | ||||||||||||
| 124mCs | 462.63(14) keV | 6.41(7) s | IT (99.89%) | 124Cs | (7)+ | ||||||||||||||
| β+ (0.11%) | 124Xe | ||||||||||||||||||
| 125Cs | 55 | 70 | 124.9097260(83) | 44.35(29) min | β+ | 125Xe | 1/2+ | ||||||||||||
| 125mCs | 266.1(11) keV | 900(30) ms | IT | 125Cs | (11/2−) | ||||||||||||||
| 126Cs | 55 | 71 | 125.909446(11) | 1.64(2) min | β+ | 126Xe | 1+ | ||||||||||||
| 126m1Cs | 273.0(7) keV | ~1 μs | IT | 126Cs | (4−) | ||||||||||||||
| 126m2Cs | 596.1(11) keV | 171(14) μs | IT | 126Cs | 8−# | ||||||||||||||
| 127Cs | 55 | 72 | 126.9074175(60) | 6.25(10) h | β+ | 127Xe | 1/2+ | ||||||||||||
| 127mCs | 452.23(21) keV | 55(3) μs | IT | 127Cs | (11/2)− | ||||||||||||||
| 128Cs | 55 | 73 | 127.9077485(57) | 3.640(14) min | β+ | 128Xe | 1+ | ||||||||||||
| 129Cs | 55 | 74 | 128.9060659(49) | 32.06(6) h | β+ | 129Xe | 1/2+ | ||||||||||||
| 129mCs | 575.40(14) keV | 718(21) ns | IT | 129Cs | (11/2−) | ||||||||||||||
| 130Cs | 55 | 75 | 129.9067093(90) | 29.21(4) min | β+ (98.4%) | 130Xe | 1+ | ||||||||||||
| β− (1.6%) | 130Ba | ||||||||||||||||||
| 130mCs | 163.25(11) keV | 3.46(6) min | IT (99.84%) | 130Cs | 5− | ||||||||||||||
| β+ (0.16%) | 130Xe | ||||||||||||||||||
| 131Cs | 55 | 76 | 130.90546846(19) | 9.689(16) d | EC | 131Xe | 5/2+ | ||||||||||||
| 132Cs | 55 | 77 | 131.9064378(11) | 6.480(6) d | β+ (98.13%) | 132Xe | 2+ | ||||||||||||
| β− (1.87%) | 132Ba | ||||||||||||||||||
| 133Cs[n 10][n 11] | 55 | 78 | 132.905451958(8) | Stable | 7/2+ | 1.0000 | |||||||||||||
| 134Cs[n 11] | 55 | 79 | 133.906718501(17) | 2.0650(4) y | β− | 134Ba | 4+ | ||||||||||||
| EC (3.0×10−4%) | 134Xe | ||||||||||||||||||
| 134mCs | 138.7441(26) keV | 2.912(2) h | IT | 134Cs | 8− | ||||||||||||||
| 135Cs[n 12] | 55 | 80 | 134.90597691(39) | 1.33(19)×106 y | β− | 135Ba | 7/2+ | ||||||||||||
| 135mCs | 1632.9(15) keV | 53(2) min | IT | 135Cs | 19/2− | ||||||||||||||
| 136Cs | 55 | 81 | 135.9073114(20) | 13.01(5) d | β− | 136Ba | 5+ | ||||||||||||
| 136mCs | 517.9(1) keV | 17.5(2) s | β−? | 136Ba | 8− | ||||||||||||||
| IT? | 136Cs | ||||||||||||||||||
| 137Cs[n 11] | 55 | 82 | 136.90708930(32) | 30.04(4) y | β− (94.70%)[7] | 137mBa | 7/2+ | ||||||||||||
| β− (5.30%)[7] | 137Ba | ||||||||||||||||||
| 138Cs | 55 | 83 | 137.9110171(98) | 33.5(2) min | β− | 138Ba | 3− | ||||||||||||
| 138mCs | 79.9(3) keV | 2.91(10) min | IT (81%) | 138Cs | 6− | ||||||||||||||
| β− (19%) | 138Ba | ||||||||||||||||||
| 139Cs | 55 | 84 | 138.9133638(34) | 9.27(5) min | β− | 139Ba | 7/2+ | ||||||||||||
| 140Cs | 55 | 85 | 139.9172837(88) | 63.7(3) s | β− | 140Ba | 1− | ||||||||||||
| 140mCs | 13.931(21) keV | 471(51) ns | IT | 140Cs | (2)− | ||||||||||||||
| 141Cs | 55 | 86 | 140.9200453(99) | 24.84(16) s | β− (99.97%) | 141Ba | 7/2+ | ||||||||||||
| β−,n (0.0342%) | 140Ba | ||||||||||||||||||
| 142Cs | 55 | 87 | 141.9242995(76) | 1.687(10) s | β− (99.91%) | 142Ba | 0− | ||||||||||||
| β−, n (0.089%) | 141Ba | ||||||||||||||||||
| 143Cs | 55 | 88 | 142.9273473(81) | 1.802(8) s | β− (98.38%) | 143Ba | 3/2+ | ||||||||||||
| β−, n (1.62%) | 142Ba | ||||||||||||||||||
| 144Cs | 55 | 89 | 143.932075(22) | 994(6) ms | β− (97.02%) | 144Ba | 1− | ||||||||||||
| β−, n (2.98%) | 143Ba | ||||||||||||||||||
| 144mCs | 92.2(5) keV | 1.1(1) μs | IT | 144Cs | (4−) | ||||||||||||||
| 145Cs | 55 | 90 | 144.9355289(97) | 582(4) ms | β− (87.2%) | 145Ba | 3/2+ | ||||||||||||
| β−, n (12.8%) | 144Ba | ||||||||||||||||||
| 145mCs | 762.9(4) keV | 0.5(1) μs | IT | 145Cs | 13/2# | ||||||||||||||
| 146Cs | 55 | 91 | 145.9406219(31) | 321.6(9) ms | β− (85.8%) | 146Ba | 1− | ||||||||||||
| β−, n (14.2%) | 145Ba | ||||||||||||||||||
| 146mCs | 46.7(1) keV | 1.25(5) μs | IT | 146Cs | 4−# | ||||||||||||||
| 147Cs | 55 | 92 | 146.9442615(90) | 230.5(9) ms | β− (71.5%) | 147Ba | (3/2+) | ||||||||||||
| β−, n (28.5%) | 146Ba | ||||||||||||||||||
| 147mCs | 701.4(4) keV | 190(20) ns | IT | 147Cs | 13/2# | ||||||||||||||
| 148Cs | 55 | 93 | 147.949639(14) | 151.8(10) ms | β− (71.3%) | 148Ba | (2−) | ||||||||||||
| β−, n (28.7%) | 147Ba | ||||||||||||||||||
| 148mCs | 45.2(1) keV | 4.8(2) μs | IT | 148Cs | 4−# | ||||||||||||||
| 149Cs | 55 | 94 | 148.95352(43)# | 112.3(25) ms | β− (75%) | 149Ba | 3/2+# | ||||||||||||
| β−, n (25%) | 148Ba | ||||||||||||||||||
| 150Cs | 55 | 95 | 149.95902(43)# | 81.0(26) ms | β− (~56%) | 150Ba | (2−) | ||||||||||||
| β−, n (~44%) | 149Ba | ||||||||||||||||||
| 151Cs | 55 | 96 | 150.96320(54)# | 59(19) ms | β− | 151Ba | 3/2+# | ||||||||||||
| This table header & footer: | |||||||||||||||||||
| EC: | Electron capture |
| IT: | Isomeric transition |
| n: | Neutron emission |
| p: | Proton emission |
Caesium-131 decays purely byelectron capture to the ground state of stablexenon-131 with a half-life of 9.69 days; its detectable radiation is theX-rays of xenon, with a maximum energy of 34.5 keV. It was introduced in 2004 forbrachytherapy byIsoray.[8]
Caesium-133 is the only stableisotope of caesium. TheSI base unit of time, thesecond, is defined by aspecific caesium-133 transition. Since 1967, the official definition of a second is:
The second, symbol s, is defined by taking the fixed numerical value of the caesium frequency,ΔνCs, the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom,[9] to be9192631770Hz, which is equal to s−1.
Caesium-134 has ahalf-life of 2.0650 years. It is produced both directly (at a very small yield because134Xe is stable) as afission product and vianeutron capture from nonradioactive133Cs (neutron capturecross section 29barns), which is a common fission product. It is not produced bynuclear weapons because133Cs is created by beta decay of original fission products only long after the nuclear explosion is over.
The combined yield of133Cs and134Cs is given as 6.7896%. The proportion between the two will change with continued neutron irradiation.134Cs also captures neutrons with a cross section of 140 barns, becoming long-lived radioactive135Cs.
Caesium-134 undergoesbeta decay (β−), producing stable134Ba after emitting on average 2.23gamma ray photons (mean energy 0.698MeV).[10]
| Nuclide | t1⁄2 | Yield | Q[a 1] | βγ |
|---|---|---|---|---|
| (Ma) | (%)[a 2] | (keV) | ||
| 99Tc | 0.211 | 6.1385 | 294 | β |
| 126Sn | 0.23 | 0.1084 | 4050[a 3] | βγ |
| 79Se | 0.33 | 0.0447 | 151 | β |
| 135Cs | 1.33 | 6.9110[a 4] | 269 | β |
| 93Zr | 1.61 | 5.4575 | 91 | βγ |
| 107Pd | 6.5 | 1.2499 | 33 | β |
| 129I | 16.1 | 0.8410 | 194 | βγ |
Caesium-135 is a mildlyradioactive isotope of caesium with a half-life of 1.33 million years. It decays via emission of a low-energy beta particle into the stable isotope barium-135. Caesium-135 is one of the sevenlong-lived fission products and the only alkaline one. In most types ofnuclear reprocessing, it stays with themedium-lived fission products (including137
Cs which can only be separated from135
Cs viaisotope separation) rather than with other long-lived fission products. As an exception,molten salt reactors create135
Cs as a completely separate stream outside the fuel (after the decay of bubble-separated135
Xe). The lowdecay energy, lack ofgamma radiation, and long half-life of135Cs make this isotope much less hazardous than137Cs or134Cs.
Its precursor135Xe has a highfission product yield (e.g., 6.3333% for235U andthermal neutrons) but also has the highest knownthermal neutron capture cross section of any nuclide. Because of this, much of the135Xe produced in currentthermal reactors (as much as >90% at steady-state full power)[11] will be converted to practically stable136
Xe before it can decay to135
Cs despite the relatively short half-life of135
Xe. Little or no135
Xe will be destroyed by neutron capture after a reactor shutdown, or in amolten salt reactor that continuously removes xenon from its fuel, afast neutron reactor, or a nuclear weapon. Thexenon pit is a phenomenon of excess neutron absorption through135
Xe buildup in the reactor after a reduction in power or a shutdown and is often managed by letting the135
Xe decay away to a level at which neutron flux can be safely controlled viacontrol rods again.
A nuclear reactor will also produce much smaller amounts of135Cs from the nonradioactive fission product133Cs by successive neutron capture to134Cs and then135Cs.
The thermal neutron capture cross section andresonance integral of135Cs are8.3 ± 0.3 and38.1 ± 2.6barns respectively.[12] Disposal of135Cs bynuclear transmutation is difficult, because of the low cross section as well as because neutron irradiation of mixed-isotope fission caesium produces more135Cs from stable133Cs. In addition, the intense medium-term radioactivity of137Cs makes handling of nuclear waste difficult.[13]
Caesium-136 has a half-life of 13.01 days. It is produced both directly (at a very small yield because136Xe isbeta-stable) as a fission product and via neutron capture from long-lived135Cs, though because of the lower cross-section (see above) and sort half-life, is much less abundant in spent fuel and vanishes quickly. It is also not produced by nuclear weapons because135Cs is created by beta decay of original fission products only long after the nuclear explosion is over. Caesium-136 undergoes beta decay (β−
) to136Ba.
Caesium-137, with a half-life of 30.04 years, is one of the two principalmedium-lived fission products, along with90Sr, which are responsible for most of theradioactivity ofspent nuclear fuel from several years up to several hundred years after use. It constitutes most of the radioactivity still left from theChernobyl accident and is a major health concern for decontaminating land near theFukushima nuclear power plant.[14]137Cs beta decays to barium-137m (a short-livednuclear isomer), which in de-excitation to its stable ground statebarium-137, usually emits agamma ray. This process is responsible for all the gamma emission from caesium-137.[15]
137Cs has a very low rate of neutron capture and cannot yet be feasibly disposed of in this way unless advances in neutron beam collimation (not otherwise achievable by magnetic fields), uniquely available only from withinmuon catalyzed fusion experiments (not in the other forms ofAccelerator Transmutation of Nuclear Waste) enables production of neutrons at high enough intensity to offset and overcome these low capture rates; until then, therefore,137Cs must simply be allowed to decay.[citation needed]
137Cs has been used as atracer in hydrologic studies, analogous to the use of3H.
The heavier isotopes have half-lives of seconds or minutes. Almost all caesium produced from nuclear fission comes from beta decay of originally more neutron-rich fission products, passing throughisotopes of iodine thenisotopes of xenon. Because these elements are volatile and can diffuse through nuclear fuel or air, caesium (thus its higher-Z decay products) is often created far from the original site of fission.[citation needed]
Daughter products other than caesium