Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Isotopes of cadmium

From Wikipedia, the free encyclopedia
(Redirected fromCadmium-110)

This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Isotopes of cadmium" – news ·newspapers ·books ·scholar ·JSTOR
(May 2018) (Learn how and when to remove this message)
Isotopes ofcadmium (48Cd)
Main isotopes[1]Decay
abun­dancehalf-life(t1/2)modepro­duct
106Cd1.25%stable
107Cdsynth6.5 hε107Ag
108Cd0.89%stable
109Cdsynth462.6 dε109Ag
110Cd12.5%stable
111Cd12.8%stable
112Cd24.1%stable
113Cd12.2%8.04×1015 yβ113In
113mCdsynth14.1 yβ113In
IT113Cd
114Cd28.8%stable
115Cdsynth53.46 hβ115In
116Cd7.51%2.8×1019 yββ116Sn
Standard atomic weightAr°(Cd)

Naturally occurringcadmium (48Cd) is composed of 8isotopes. For two of them, naturalradioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely longhalf-lives. The two natural radioactive isotopes are113Cd (beta decay, half-life is 8.04 × 1015 years) and116Cd (two-neutrinodouble beta decay, half-life is 2.8 × 1019 years). The other three are106Cd,108Cd (double electron capture), and114Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110Cd,111Cd, and112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are109Cd with a half-life of 462.6 days, and115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 knownmeta states, with the most stable being113mCd (t1/2 14.1 years),115mCd (t1/2 44.6 days) and117mCd (t1/2 3.36 hours).

The known isotopes of cadmium range inatomic mass from 94.950 u (95Cd) to 131.946 u (132Cd). The primarydecay mode before the second most abundant stable isotope,112Cd, iselectron capture and the primary modes after arebeta emission and electron capture. The primarydecay product before112Cd is element 47 (silver) and the primary product after is element 49 (indium).

A 2021 study has shown at high ionic strengths, Cd isotope fractionation mainly depends on its complexation with carboxylic sites. At low ionic strengths, nonspecific Cd binding induced by electrostatic attractions plays a dominant role and promotes Cd isotope fractionation during complexation.[4]

List of isotopes

[edit]


Nuclide
[n 1]
ZNIsotopic mass(Da)[5]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 9]
Natural abundance(mole fraction)
Excitation energy[n 9]Normal proportion[1]Range of variation
94Cd484693.95659(54)#80# ms
[>760 ns]
0+
95Cd484794.94948(61)#32(3) msβ+ (95.4%)95Ag9/2+#
β+,p (4.6%)94Pd
96Cd484895.94034(44)#1.003(47) sβ+ (98.4%)96Ag0+
β+, p (1.6%)95Pd
96m1Cd6000(1400) keV511(26) msβ+ (84.6%)96Ag16+
β+, p (15.4%)95Pd
96m2Cd5605(5) keV198(18) nsIT96Cd(12−,13−)
97Cd484996.93480(45)1.16(5) sβ+ (92.6%)97Ag(9/2+)
β+, p (7.4%)96Pd
97m1Cd1245.1(2) keV730(70) μsIT97Cd(1/2−)
97m2Cd2620(580) keV3.86(6) sβ+ (74.9%)97Ag(25/2+)
β+, p (25.1%)96Pd
98Cd485097.927389(56)9.29(10) sβ+ (>99.97%)98Ag0+
β+, p (<0.029%)97Pd
98m1Cd2428.3(4) keV154(16) nsIT98Cd(8+)
98m2Cd6635(2) keV224(5) nsIT98Cd(12+)
99Cd485198.9249258(17)17(1) sβ+ (99.79%)99Ag5/2+#
β+, p (0.21%)98Pd
β+, α (<10−4%)95Rh
100Cd485299.9203488(18)49.1(5) sβ+100Ag0+
101Cd4853100.9185862(16)1.36(5) minβ+101Ag5/2+
102Cd4854101.9144818(18)5.5(5) minβ+102Ag0+
103Cd4855102.9134169(19)7.3(1) minβ+103Ag5/2+
104Cd4856103.9098562(18)57.7(10) minβ+104Ag0+
105Cd4857104.9094639(15)55.5(4) minβ+105Ag5/2+
105mCd2517.6(5) keV4.5(5) μsIT105Cd(21/2+)
106Cd4858105.9064598(12)Observationally Stable[n 10]0+0.01245(22)
107Cd4859106.9066120(18)6.50(2) hβ+107Ag5/2+
108Cd4860107.9041836(12)Observationally Stable[n 11]0+0.00888(11)
109Cd4861108.9049867(16)461.3(5) dEC109Ag5/2+
109m1Cd59.60(7) keV11.8(16) μsIT109Cd1/2+
109m2Cd463.10(11) keV10.6(4) μsIT109Cd11/2−
110Cd4862109.90300747(41)Stable0+0.12470(61)
111Cd[n 12]4863110.90418378(38)Stable1/2+0.12795(12)
111mCd396.214(21) keV48.50(9) minIT111Cd11/2−
112Cd[n 12]4864111.90276390(27)Stable0+0.24109(7)
113Cd[n 12][n 13]4865112.90440811(26)8.04(5)×1015 yβ113In1/2+0.12227(7)
113mCd[n 12]263.54(3) keV13.89(11) yβ (99.90%)113In11/2−
IT (0.0964%)113Cd
114Cd[n 12]4866113.90336500(30)Observationally Stable[n 14]0+0.28754(81)
115Cd[n 12]4867114.90543743(70)53.46(5) hβ115mIn1/2+
115mCd181.0(5) keV44.56(24) dβ115mIn11/2−
116Cd[n 12][n 13]4868115.90476323(17)2.69(9)×1019 yββ116Sn0+0.07512(54)
117Cd4869116.9072260(11)2.503(5) hβ117In1/2+
117mCd136.4(2) keV3.441(9) hβ117In11/2−
118Cd4870117.906922(21)50.3(2) minβ118In0+
119Cd4871118.909847(40)2.69(2) minβ119In1/2+
119mCd146.54(11) keV2.20(2) minβ119In11/2−
120Cd4872119.9098681(40)50.80(21) sβ120In0+
121Cd4873120.9129637(21)13.5(3) sβ121In3/2+
121mCd214.86(15) keV8.3(8) sβ121In11/2−
122Cd4874121.9134591(25)5.98(10) s[6]β122In0+
123Cd4875122.9168925(29)2.10(2) sβ123In3/2+
123mCd143(4) keV1.82(3) sβ (?%)123In11/2−
IT (?%)123Cd
124Cd4876123.9176598(28)1.25(2) sβ124In0+
125Cd4877124.9212576(31)680(40) msβ125In3/2+
125m1Cd186(4) keV480(30) msβ125In11/2−
125m2Cd1648(4) keV19(3) μsIT125Cd(19/2+)
126Cd4878125.9224303(25)512(5) msβ126In0+
127Cd4879126.9262033(67)480(100) msβ127In3/2+
127m1Cd285(8) keV360(40) msβ127In11/2−
127m2Cd1845(8) keV17.5(3) μsIT127Cd(19/2+)
128Cd4880127.9278168(69)246(2) msβ128In0+
128m1Cd1870.5(3) keV270(7) nsIT128Cd(5−)
128m2Cd2714.6(4) keV3.56(6) μsIT128Cd(10+)
128m2Cd4286.6(15) keV6.3(8) msIT128Cd(15−)
129Cd4881128.9322356(57)147(3) msβ (?%)129In11/2−
β,n (?%)128In
129m1Cd343(8) keV157(8) msβ (?%)129In3/2+
β,n (?%)128In
129m2Cd2283(8) keV3.6(2) msIT129Cd(21/2+)
130Cd4882129.934388(24)126.8(18) msβ (96.5%)130In0+
β, n (3.5%)129In
130mCd2129.6(10) keV240(16) nsIT130Cd(8+)
131Cd4883130.940728(21)98(2) msβ (96.5%)131In7/2−#
β, n (3.5%)130In
132Cd4884131.945823(64)84(5) msβ, n (60%)131In0+
β (40%)132In
133Cd4885132.95261(22)#61(6) msβ (?%)133In7/2−#
β, n (?%)132In
134Cd4886133.95764(32)#65(15) msβ134In0+
This table header & footer:
  1. ^mCd – Excitednuclear isomer.
  2. ^( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^# – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^Bold half-life – nearly stable, half-life longer thanage of universe.
  5. ^Modes of decay:
    EC:Electron capture


    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. ^Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^Bold symbol as daughter – Daughter product is stable.
  8. ^( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ab# – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  10. ^Believed to decay by β+β+ to106Pd with a half-life over 1.1×1021 years
  11. ^Believed to decay by β+β+ to108Pd with a half-life over 4.1×1017 years
  12. ^abcdefgFission product
  13. ^abPrimordialradionuclide
  14. ^Believed to undergo ββ decay to114Sn with a half-life over 9.2×1016 years

Cadmium-113m

[edit]
t½
(year)
Yield
(%)
Q
(keV)
βγ
155Eu4.760.0803252βγ
85Kr10.760.2180687βγ
113mCd14.10.0008316β
90Sr28.94.505  2826β
137Cs30.236.337  1176βγ
121mSn43.90.00005390βγ
151Sm94.60.531477β

Cadmium-113m is a cadmiumradioisotope andnuclear isomer with a half-life of 14.1 years. In a normalthermal reactor, it has a very lowfission product yield, plus its largeneutron capturecross section means that most of even the small amount produced is destroyed in the course of thenuclear fuel's burnup; thus, this isotope is not a significant contributor tonuclear waste.

Fast fission or fission of some heavieractinides[which?] will produce113mCd at higher yields.

References

[edit]
  1. ^abcdeKondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3): 030001.doi:10.1088/1674-1137/abddae.
  2. ^"Standard Atomic Weights: Cadmium".CIAAW. 2013.
  3. ^Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04)."Standard atomic weights of the elements 2021 (IUPAC Technical Report)".Pure and Applied Chemistry.doi:10.1515/pac-2019-0603.ISSN 1365-3075.
  4. ^Ratié, Gildas; Chrastný, Vladislav; Guinoiseau, Damien; Marsac, Rémi; Vaňková, Zuzana; Komárek, Michael (2021-06-01)."Cadmium Isotope Fractionation during Complexation with Humic Acid".Environmental Science & Technology.55 (11):7430–7444.Bibcode:2021EnST...55.7430R.doi:10.1021/acs.est.1c00646.ISSN 0013-936X.PMID 33970606.S2CID 234361430.
  5. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3): 030003.doi:10.1088/1674-1137/abddaf.
  6. ^Nesterenko, D. A.; Ruotsalainen, J.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Nikas, S.; Ortiz-Cortes, A.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; Romero, J.; de Roubin, A.; Srivastava, P. C.; Suhonen, J.; Virtanen, V.; Zadvornaya, A. (1 November 2023). "High-precision measurements of low-lying isomeric states in In 120 – 124 with the JYFLTRAP double Penning trap".Physical Review C.108 (5).arXiv:2306.11505.doi:10.1103/PhysRevC.108.054301.
Group12 3456789101112131415161718
PeriodHydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gensChal­co­gensHalo­gensNoble gases
12
345678910
1112131415161718
192021222324252627282930313233343536
373839404142434445464748495051525354
55561 asterisk71727374757677787980818283848586
87881 asterisk103104105106107108109110111112113114115116117118
119120
1 asterisk5758596061626364656667686970 
1 asterisk8990919293949596979899100101102
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Isotopes_of_cadmium&oldid=1280442581#Cadmium-110"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp