Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

CW Leonis

From Wikipedia, the free encyclopedia
Carbon star in the constellation Leo
CW Leonis

CW Leonis inultraviolet showing the bowshock
Observation data
Epoch J2000      Equinox J2000
ConstellationLeo
Right ascension09h 47m 57.406s[1]
Declination+13° 16′ 43.56″[1]
Apparent magnitude (V)14.5 (var.)[2]
Characteristics
Spectral typeC9,5e[3]
Apparent magnitude (R)10.96[1]
Apparent magnitude (J)7.34[1]
Apparent magnitude (H)4.04[1]
Apparent magnitude (K)1.19[1]
Variable typeMira[4]
Astrometry
Proper motion (μ)RA: 35±1mas/yr
Dec.: 12±1[5]mas/yr
Parallax (π)10.56±2.02 mas[6]
Distanceapprox. 310 ly
(approx. 90 pc)
Details
Mass0.7 - 0.9[5] M
Radius560[7] R
Luminosity8,500 (average),11,850 (maximum)[7] L
Temperature2,300[7](1,915 - 2,105)[8] K
Other designations
CW Leo, Peanut Nebula,IRC+10216,IRAS 09452+1330,PK 221+45 1, Zel 0945+135,RAFGL 1381,2MASS J09475740+1316435, SCM 50[9]
Database references
SIMBADdata

CW Leonis orIRC +10216 is avariablecarbon star that is embedded in a thick dust envelope. It was first discovered in 1969 by a group of astronomers led byEric Becklin, based upon infrared observations made with the 62-inchCaltech Infrared Telescope atMount Wilson Observatory. Its energy is emitted mostly at infrared wavelengths. At a wavelength of 5 μm, it was found to have the highest flux of any object outside theSolar System.[10]

Properties

[edit]
ALINEAR (white-light)light curve for CW Leonis, adapted from Palaversaet al. (2013)[11]

CW Leonis is believed to be in a late stage of its life, blowing off its own sooty atmosphere to form awhite dwarf. Based upon isotope ratios ofmagnesium, the initial mass of this star has been constrained to lie between 3–5solar masses. The mass of the star's core, and the final mass of the star once it becomes a white dwarf, is about 0.7–0.9 solar masses.[12] Itsbolometric luminosity varies over the course of a 649-day pulsation cycle, ranging from a minimum of about 6,250 times the Sun's luminosity up to a peak of around 15,800 times. The overall output of the star is best represented by a luminosity of 11,300 L.[13] The brightness of the star varies by about two magnitudes over its pulsation period, and may have been increasing over a period of years. One study finds an increase in the mean brightness of about a magnitude between 2004 and 2014.[14] Many studies of this star are done atinfrared wavelengths because of its very red colour; published visual magnitudes are uncommon and often dramatically different. TheGuide Star Catalog from 2006 gives an apparent visual magnitude of 19.23.[15] TheASAS-SN variable star catalog based on observations from 2014 to 2018 reports a mean magnitude of 17.56 and an amplitude of 0.68 magnitudes.[16] An even later study gives a mean magnitude of 14.5 and an amplitude of 2.0 magnitudes.[2]

The carbon-rich gaseous envelope surrounding this star is at least 69,000 years old and the star is losing about(1–4) × 10−5solar masses per year.[13] Theextended envelope contains at least 1.4solar masses of material.[17] Speckle observations from 1999 show a complex structure to thisdust envelope, including partial arcs and unfinished shells. This clumpiness may be caused by a magnetic cycle in the star that is comparable to thesolar cycle in the Sun and results in periodic increases in mass loss.[18]

Variouschemical elements and about 50molecules have been detected in the outflows from CW Leonis, among othersnitrogen,oxygen andwater,silicon, andiron. One theory was that the star was once surrounded by comets that melted once the star started expanding,[19] but water is now thought to form naturally in the atmospheres of all carbon stars.[20]

Distance

[edit]
CW Leonis glows from deep within a thick shroud of dust in this image from the NASA/ESA Hubble Space Telescope.

If the distance to this star is assumed to be at the lower end of the estimate range, 120 pc, then theastrosphere surrounding the star spans a radius of about 84,000 AU. The star and its surrounding envelope are advancing at a velocity of more than 91 km/s through the surroundinginterstellar medium.[17] It is moving with aspace velocity of [U, V, W] = [21.6 ± 3.9,12.6 ± 3.5,1.8 ± 3.3] km s−1.[12]

Companion

[edit]

Several papers have suggested that CW Leonis has a closebinary companion.[14]ALMA andastrometric measurements may show orbital motion. The astrometric measurements, combined with a model including the companion, provide a parallax measurement showing that CW Leonis is the closestcarbon star to the Earth.[6]

See also

[edit]

References

[edit]
  1. ^abcdefCutri, Roc M.; Skrutskie, Michael F.; Van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas; Cambresy, Laurent; Evans, Tracey E.; Fowler, John W.; Gizis, John E.; Howard, Elizabeth V.; Huchra, John P.; Jarrett, Thomas H.; Kopan, Eugene L.; Kirkpatrick, J. Davy; Light, Robert M.; Marsh, Kenneth A.; McCallon, Howard L.; Schneider, Stephen E.; Stiening, Rae; Sykes, Matthew J.; Weinberg, Martin D.; Wheaton, William A.; Wheelock, Sherry L.; Zacarias, N. (2003)."VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)".CDS/ADC Collection of Electronic Catalogues.2246: II/246.Bibcode:2003yCat.2246....0C.
  2. ^abGigoyan, K. S.; Kostandyan, G. R.; Gigoyan, K. K.; Sarkissian, A.; Meftah, M.; Russeil, D.; Zamkotsian, F.; Rahmatullaeva, F. D.; Paronyan, G. (2021). "Investigations of the Periodic Variables in the Catalina and Linear Databases".Astrophysics.64 (1): 20.Bibcode:2021Ap.....64...20G.doi:10.1007/s10511-021-09664-5.S2CID 254251265.
  3. ^Cohen, M. (1979)."Circumstellar envelopes and the evolution of carbon stars".Monthly Notices of the Royal Astronomical Society.186 (4):837–852.Bibcode:1979MNRAS.186..837C.doi:10.1093/mnras/186.4.837.
  4. ^Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)".VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S.1.Bibcode:2009yCat....102025S.
  5. ^abMatthews, L. D.; Gérard, E.; Le Bertre, T. (2015)."Discovery of a shell of neutral atomic hydrogen surrounding the carbon star IRC+10216".Monthly Notices of the Royal Astronomical Society.449 (1):220–233.arXiv:1502.02050.Bibcode:2015MNRAS.449..220M.doi:10.1093/mnras/stv263.S2CID 96460867.
  6. ^abSozzetti, A.; Smart, R. L.; Drimmel, R.; Giacobbe, P.; Lattanzi, M. G. (2017)."Evidence for orbital motion of CW Leonis from ground-based astrometry".Monthly Notices of the Royal Astronomical Society: Letters.471 (1):L1 –L5.arXiv:1706.04391.Bibcode:2017MNRAS.471L...1S.doi:10.1093/mnrasl/slx082.S2CID 119070871.
  7. ^abcSchmidt, M. R.; He, J. H.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Justtanont, K.; Teyssier, D.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Marston, A. P.; Sobolev, A. M.; De Koter, A.; Schöier, F. L. (2016)."Herschel/HIFI observations of the circumstellar ammonia lines in IRC+10216".Astronomy & Astrophysics.592: A131.arXiv:1606.01878.Bibcode:2016A&A...592A.131S.doi:10.1051/0004-6361/201527290.PMC 5217166.PMID 28065983.
  8. ^Bergeat, J.; Knapik, A.; Rutily, B. (2001)."The effective temperatures of carbon-rich stars".Astronomy and Astrophysics.369:178–209.Bibcode:2001A&A...369..178B.doi:10.1051/0004-6361:20010106.
  9. ^"V* CW Leo -- Variable Star of Mira Cet type".SIMBAD.Centre de Données astronomiques de Strasbourg. Retrieved2011-05-09.
  10. ^Becklin, E. E.; et al. (December 1969)."The Unusual Infrared Object IRC+10216"(PDF).Astrophysical Journal.158: L133.Bibcode:1969ApJ...158L.133B.doi:10.1086/180450.
  11. ^Palaversa, Lovro; Ivezić, Željko; Eyer, Laurent; Ruždjak, Domagoj; Sudar, Davor; Galin, Mario; Kroflin, Andrea; Mesarić, Martina; Munk, Petra; Vrbanec, Dijana; Božić, Hrvoje; Loebman, Sarah; Sesar, Branimir; Rimoldini, Lorenzo; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Stuart, J. Scott; Becker, Andrew C.; Srdoč, Gregor; Wozniak, Przemyslaw; Oluseyi, Hakeem (October 2013). "Exploring the Variable Sky with LINEAR. III. Classification of Periodic Light Curves".The Astronomical Journal.146 (4): 101.arXiv:1308.0357.Bibcode:2013AJ....146..101P.doi:10.1088/0004-6256/146/4/101.hdl:1721.1/92739.S2CID 31317836.
  12. ^abLadjal, D.; et al. (July 2010). "Herschel PACS and SPIRE imaging of CW Leonis".Astronomy and Astrophysics.518: L141.arXiv:1005.1433.Bibcode:2010A&A...518L.141L.doi:10.1051/0004-6361/201014658.S2CID 14279789.
  13. ^abDe Beck, E.; et al. (January 10, 2012). "On the physical structure of IRC+10216".Astronomy & Astrophysics.539: A108.arXiv:1201.1850.Bibcode:2012A&A...539A.108D.doi:10.1051/0004-6361/201117635.S2CID 56163906.
  14. ^abKim, Hyosun; Lee, Ho-Gyu; Mauron, Nicolas; Chu, You-Hua (2015). "HST Images Reveal Dramatic Changes in the Core of IRC+10216".The Astrophysical Journal.804 (1): L10.arXiv:1412.0083.Bibcode:2015ApJ...804L..10K.doi:10.1088/2041-8205/804/1/L10.S2CID 118558287.
  15. ^Lasker, Barry M.; et al. (August 2008). "The Second-Generation Guide Star Catalog: Description and Properties".The Astronomical Journal.136 (2):735–766.arXiv:0807.2522.Bibcode:2008AJ....136..735L.doi:10.1088/0004-6256/136/2/735.S2CID 17641056.
  16. ^Jayasinghe, T.; Kochanek, C. S.; Stanek, K. Z.; Shappee, B. J.; Holoien, T. W. -S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Pawlak, M.; Shields, J. V.; Pojmanski, G.; Otero, S.; Britt, C. A.; Will, D. (2018)."The ASAS-SN catalogue of variable stars I: The Serendipitous Survey".Monthly Notices of the Royal Astronomical Society.477 (3): 3145.arXiv:1803.01001.Bibcode:2018MNRAS.477.3145J.doi:10.1093/mnras/sty838.
  17. ^abSahai, Raghvendra; Chronopoulos, Christopher K. (March 2010). "The Astrosphere of the Asymptotic Giant Branch Star IRC+10216".The Astrophysical Journal Letters.711 (2):L53 –L56.arXiv:1001.4997.Bibcode:2010ApJ...711L..53S.doi:10.1088/2041-8205/711/2/L53.S2CID 118705396.
  18. ^Dinh-V-Trung, Jeremy; Lim (May 2008). "Molecular Shells in IRC+10216: Evidence for Nonisotropic and Episodic Mass-Loss Enhancement".The Astrophysical Journal.678 (1):303–308.arXiv:0712.1714.Bibcode:2008ApJ...678..303D.doi:10.1086/527669.S2CID 16389370.
  19. ^Ford, K. E. Saavik; Neufeld, David A.; Goldsmith, Paul F.; Melnick, Gary J. (2003). "Detection of OH toward the Extreme Carbon Star IRC +10216".The Astrophysical Journal.589 (1):430–438.arXiv:astro-ph/0302103.Bibcode:2003ApJ...589..430F.doi:10.1086/374552.S2CID 16682238.
  20. ^Lombaert, R.; Decin, L.; Royer, P.; De Koter, A.; Cox, N. L. J.; González-Alfonso, E.; Neufeld, D.; De Ridder, J.; Agúndez, M.; Blommaert, J. A. D. L.; Khouri, T.; Groenewegen, M. A. T.; Kerschbaum, F.; Cernicharo, J.; Vandenbussche, B.; Waelkens, C. (2016). "Constraints on the H2O formation mechanism in the wind of carbon-rich AGB stars".Astronomy & Astrophysics.588: A124.arXiv:1601.07017.Bibcode:2016A&A...588A.124L.doi:10.1051/0004-6361/201527049.S2CID 62787287.

External links

[edit]
Wikimedia Commons has media related toCW Leonis.
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Galaxies
Messier
NGC
Numbered
Other
Galaxy clusters
Astronomical events
Retrieved from "https://en.wikipedia.org/w/index.php?title=CW_Leonis&oldid=1305491201"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp