Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

CAS latency

From Wikipedia, the free encyclopedia
Time delay between data read command and availability of data in a computer's RAM
This articlemay containoriginal research. Pleaseimprove it byverifying the claims made and addinginline citations. Statements consisting only of original research should be removed.(July 2019) (Learn how and when to remove this message)

Column Address Strobe latency, also calledCAS latency orCL, is the delay in clock cycles between the READ command and the moment data is available.[1][2] In asynchronousDRAM, the interval is specified in nanoseconds (absolute time).[3] Insynchronous DRAM, the interval is specified in clock cycles. Because the latency is dependent upon a number of clock ticks instead of absolute time, the actual time for anSDRAM module to respond to a CAS event might vary between uses of the same module if theclock rate differs.

RAM operation background

[edit]
Further information:DRAM § Principles of operation

Dynamic RAM is arranged in a rectangular array. Each row is selected by a horizontalword line. Sending a logical high signal along a given row enables theMOSFETs present in that row, connecting each storage capacitor to its corresponding verticalbit line. Each bit line is connected to asense amplifier that amplifies the small voltage change produced by the storage capacitor. This amplified signal is then output from the DRAM chip as well as driven back up the bit line torefresh the row.

When no word line is active, the array is idle and the bit lines are held in a precharged[4] state, with a voltage halfway between high and low. This indeterminate signal is deflected towards high or low by the storage capacitor when a row is made active.

To access memory, a row must first be selected and loaded into the sense amplifiers. This row is thenactive, and columns may be accessed for read or write.

The CAS latency is the delay between the time at which the column address and thecolumn address strobe (CAS) signal are presented to the memory module and the time at which the corresponding data is made available by the memory module. The desired row must already be active; if it is not, additional time is required.

As an example, a typical 1GiBSDRAM memory module might contain eight separate one-gibibit DRAM chips, each offering 128MiB of storage space. Each chip is divided internally into eight banks of 227=128Mibits, each of which composes a separate DRAM array. Each bank contains 214=16384 rows of 213=8192 bits each. One byte of memory (from each chip; 64 bits total from the whole DIMM) is accessed by supplying a 3-bit bank number, a 14-bit row address, and a 13-bit column address.[citation needed]

Effect on memory access speed

[edit]
icon
This sectionneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources in this section. Unsourced material may be challenged and removed.(September 2020) (Learn how and when to remove this message)

With asynchronous DRAM, memory was accessed by amemory controller on the memory bus based on a set timing rather than a clock, and was separate from the system bus.[3]Synchronous DRAM, however, has a CAS latency that is dependent upon the clock rate. Accordingly, the CAS latency of anSDRAM memory module is specified in clock ticks instead of absolute time.[citation needed]

Because memory modules have multiple internal banks, and data can be output from one during access latency for another, the output pins can be kept 100% busy regardless of the CAS latency throughpipelining; the maximum attainablebandwidth is determined solely by the clock speed. Unfortunately, this maximum bandwidth can only be attained if the address of the data to be read is known long enough in advance; if the address of the data being accessed is not predictable,pipeline stalls can occur, resulting in a loss of bandwidth. For a completely unknown memory access (AKA Random access), the relevant latency is the time to close any open row, plus the time to open the desired row, followed by the CAS latency to read data from it. Due tospatial locality, however, it is common to access several words in the same row. In this case, the CAS latency alone determines the elapsed time.

Because modernDRAM modules' CAS latencies are specified in clock ticks instead of time, when comparing latencies at different clock speeds, latencies must be translated into absolute times to make a fair comparison; a higher numerical CAS latency may still be less time if the clock is faster. Likewise, a memory module which isunderclocked could have its CAS latencycycle count reduced to preserve the same CAS latency time.[citation needed]

Double data rate (DDR)RAM performs two transfers per clock cycle, and it is usually described by this transfer rate. Because the CAS latency is specified in clock cycles, and not transfers (which occur on both the rising and falling edges of the clock), it is important to ensure it is the clock rate (half of the transfer rate) which is being used to compute CAS latency times.[citation needed]

Another complicating factor is the use of burst transfers. A modern microprocessor might have acache line size of 64 bytes, requiring eight transfers from a 64-bit-wide (eight bytes) memory to fill. The CAS latency can only accurately measure the time to transfer the first word of memory; the time to transfer all eight words depends on the data transfer rate as well. Fortunately, the processor typically does not need to wait for all eight words; the burst is usually sent incritical word first order, and the first critical word can be used by the microprocessor immediately.

In the table below, data rates are given in million transfers—also known asmegatransfers—per second (MT/s), while clock rates are given in MHz, million cycles per second.

Memory timing examples

[edit]
Memory timing examples (CAS latency only)[citation needed][original research?]
GenerationTypeData rateTransfer time[a]Command rate[b]Cycle time[c]CAS latencyFirst word[d]Fourth word[d]Eighth word[d]
SDRAMPC100100 MT/s10.000 ns100 MHz10.000 ns220.00 ns50.00 ns90.00 ns
PC133133 MT/s7.500 ns133 MHz7.500 ns322.50 ns45.00 ns75.00 ns
DDR SDRAMDDR-333333 MT/s3.000 ns166 MHz6.000 ns2.515.00 ns24.00 ns36.00 ns
DDR-400400 MT/s2.500 ns200 MHz5.000 ns315.00 ns22.50 ns32.50 ns
2.512.50 ns20.00 ns30.00 ns
210.00 ns17.50 ns27.50 ns
DDR2 SDRAMDDR2-400400 MT/s2.500 ns200 MHz5.000 ns420.00 ns27.50 ns37.50 ns
315.00 ns22.50 ns32.50 ns
DDR2-533533 MT/s1.875 ns266 MHz3.750 ns415.00 ns20.63 ns28.13 ns
311.25 ns16.88 ns24.38 ns
DDR2-667667 MT/s1.500 ns333 MHz3.000 ns515.00 ns19.50 ns25.50 ns
412.00 ns16.50 ns22.50 ns
DDR2-800800 MT/s1.250 ns400 MHz2.500 ns615.00 ns18.75 ns23.75 ns
512.50 ns16.25 ns21.25 ns
4.511.25 ns15.00 ns20.00 ns
410.00 ns13.75 ns18.75 ns
DDR2-10661066 MT/s0.938 ns533 MHz1.875 ns713.13 ns15.94 ns19.69 ns
611.25 ns14.06 ns17.81 ns
59.38 ns12.19 ns15.94 ns
4.58.44 ns11.25 ns15.00 ns
47.50 ns10.31 ns14.06 ns
DDR3 SDRAMDDR3-10661066 MT/s0.938 ns533 MHz1.875 ns713.13 ns15.94 ns19.69 ns
DDR3-13331333 MT/s0.750 ns666 MHz1.500 ns913.50 ns15.75 ns18.75 ns
812.00 ns14.25 ns17.25 ns
710.50 ns12.75 ns15.75 ns
69.00 ns11.25 ns14.25 ns
DDR3-13751375 MT/s0.727 ns687 MHz1.455 ns57.27 ns9.45 ns12.36 ns
DDR3-16001600 MT/s0.625 ns800 MHz1.250 ns1113.75 ns15.63 ns18.13 ns
1012.50 ns14.38 ns16.88 ns
911.25 ns13.13 ns15.63 ns
810.00 ns11.88 ns14.38 ns
78.75 ns10.63 ns13.13 ns
67.50 ns9.38 ns11.88 ns
DDR3-18661866 MT/s0.536 ns933 MHz1.071 ns1010.71 ns12.32 ns14.46 ns
99.64 ns11.25 ns13.39 ns
88.57 ns10.18 ns12.32 ns
DDR3-20002000 MT/s0.500 ns1000 MHz1.000 ns99.00 ns10.50 ns12.50 ns
DDR3-21332133 MT/s0.469 ns1066 MHz0.938 ns1211.25 ns12.66 ns14.53 ns
1110.31 ns11.72 ns13.59 ns
109.38 ns10.78 ns12.66 ns
98.44 ns9.84 ns11.72 ns
87.50 ns8.91 ns10.78 ns
76.56 ns7.97 ns9.84 ns
DDR3-22002200 MT/s0.455 ns1100 MHz0.909 ns76.36 ns7.73 ns9.55 ns
DDR3-24002400 MT/s0.417 ns1200 MHz0.833 ns1310.83 ns12.08 ns13.75 ns
1210.00 ns11.25 ns12.92 ns
119.17 ns10.42 ns12.08 ns
108.33 ns9.58 ns11.25 ns
97.50 ns8.75 ns10.42 ns
DDR3-26002600 MT/s0.385 ns1300 MHz0.769 ns118.46 ns9.62 ns11.15 ns
DDR3-26662666 MT/s0.375 ns1333 MHz0.750 ns1511.25 ns12.38 ns13.88 ns
139.75 ns10.88 ns12.38 ns
129.00 ns10.13 ns11.63 ns
118.25 ns9.38 ns10.88 ns
DDR3-28002800 MT/s0.357 ns1400 MHz0.714 ns1611.43 ns12.50 ns13.93 ns
128.57 ns9.64 ns11.07 ns
117.86 ns8.93 ns10.36 ns
DDR3-29332933 MT/s0.341 ns1466 MHz0.682 ns128.18 ns9.20 ns10.57 ns
DDR3-30003000 MT/s0.333 ns1500 MHz0.667 ns128.00 ns9.00 ns10.33 ns
DDR3-31003100 MT/s0.323 ns1550 MHz0.645 ns127.74 ns8.71 ns10.00 ns
DDR3-32003200 MT/s0.313 ns1600 MHz0.625 ns1610.00 ns10.94 ns12.19 ns
DDR3-33003300 MT/s0.303 ns1650 MHz0.606 ns169.70 ns10.61 ns11.82 ns
DDR4 SDRAM
DDR4-16001600 MT/s0.625 ns800 MHz1.250 ns1215.00 ns16.88 ns19.38 ns
1113.75 ns15.63 ns18.13 ns
1012.50 ns14.38 ns16.88 ns
DDR4-18661866 MT/s0.536 ns933 MHz1.071 ns1415.00 ns16.61 ns18.75 ns
1313.93 ns15.54 ns17.68 ns
1212.86 ns14.46 ns16.61 ns
DDR4-21332133 MT/s0.469 ns1066 MHz0.938 ns1615.00 ns16.41 ns18.28 ns
1514.06 ns15.47 ns17.34 ns
1413.13 ns14.53 ns16.41 ns
DDR4-24002400 MT/s0.417 ns1200 MHz0.833 ns1714.17 ns15.42 ns17.08 ns
1613.33 ns14.58 ns16.25 ns
1512.50 ns13.75 ns15.42 ns
DDR4-26662666 MT/s0.375 ns1333 MHz0.750 ns1914.25 ns15.38 ns16.88 ns
1712.75 ns13.88 ns15.38 ns
1612.00 ns13.13 ns14.63 ns
1511.25 ns12.38 ns13.88 ns
139.75 ns10.88 ns12.38 ns
DDR4-28002800 MT/s0.357 ns1400 MHz0.714 ns1712.14 ns13.21 ns14.64 ns
1611.43 ns12.50 ns13.93 ns
1510.71 ns11.79 ns13.21 ns
1410.00 ns11.07 ns12.50 ns
DDR4-30003000 MT/s0.333 ns1500 MHz0.667 ns1711.33 ns12.33 ns13.67 ns
1610.67 ns11.67 ns13.00 ns
1510.00 ns11.00 ns12.33 ns
149.33 ns10.33 ns11.67 ns
DDR4-32003200 MT/s0.313 ns1600 MHz0.625 ns1610.00 ns10.94 ns12.19 ns
159.38 ns10.31 ns11.56 ns
148.75 ns9.69 ns10.94 ns
DDR4-33003300 MT/s0.303 ns1650 MHz0.606 ns169.70 ns10.61 ns11.82 ns
DDR4-33333333 MT/s0.300 ns1666 MHz0.600 ns169.60 ns10.50 ns11.70 ns
DDR4-34003400 MT/s0.294 ns1700 MHz0.588 ns169.41 ns10.29 ns11.47 ns
148.24 ns9.12 ns10.29 ns
DDR4-34663466 MT/s0.288 ns1733 MHz0.577 ns1810.38 ns11.25 ns12.40 ns
179.81 ns10.67 ns11.83 ns
169.23 ns10.10 ns11.25 ns
DDR4-35333533 MT/s0.283 ns1766 MHz0.566 ns169.06 ns9.91 ns11.04 ns
158.49 ns9.34 ns10.47 ns
DDR4-36003600 MT/s0.278 ns1800 MHz0.556 ns1910.56 ns11.39 ns12.50 ns
1810.00 ns10.83 ns11.94 ns
179.44 ns10.28 ns11.39 ns
168.89 ns9.72 ns10.83 ns
158.33 ns9.17 ns10.28 ns
147.78 ns8.61 ns9.72 ns
DDR4-37333733 MT/s0.268 ns1866 MHz0.536 ns179.11 ns9.91 ns10.98 ns
DDR4-38663866 MT/s0.259 ns1933 MHz0.517 ns189.31 ns10.09 ns11.12 ns
DDR4-40004000 MT/s0.250 ns2000 MHz0.500 ns199.50 ns10.25 ns11.25 ns
189.00 ns9.75 ns10.75 ns
178.50 ns9.25 ns10.25 ns
168.00 ns8.75 ns9.75 ns
DDR4-41334133 MT/s0.242 ns2066 MHz0.484 ns199.19 ns9.92 ns10.89 ns
DDR4-42004200 MT/s0.238 ns2100 MHz0.476 ns199.05 ns9.76 ns10.71 ns
DDR4-42664266 MT/s0.234 ns2133 MHz0.469 ns198.91 ns9.61 ns10.55 ns
188.44 ns9.14 ns10.08 ns
177.97 ns8.67 ns9.61 ns
167.50 ns8.20 ns9.14 ns
DDR4-44004400 MT/s0.227 ns2200 MHz0.454 ns198.64 ns9.32 ns10.23 ns
188.18 ns8.86 ns9.77 ns
177.73 ns8.41 ns9.32 ns
DDR4-46004600 MT/s0.217 ns2300 MHz0.435 ns198.26 ns8.91 ns9.78 ns
187.82 ns8.48 ns9.35 ns
DDR4-48004800 MT/s0.208 ns2400 MHz0.417 ns208.33 ns8.96 ns9.79 ns
197.92 ns8.54 ns9.38 ns
DDR5 SDRAM
DDR5-48004800 MT/s0.208 ns2400 MHz0.417 ns4016.67 ns17.29 ns18.13 ns
3815.83 ns16.46 ns17.29 ns
3615.00 ns15.63 ns16.46 ns
3414.17 ns14.79 ns15.63 ns
DDR5-52005200 MT/s0.192 ns2600 MHz0.385 ns4015.38 ns15.96 ns16.73 ns
3814.62 ns15.19 ns15.96 ns
3613.85 ns14.42 ns15.19 ns
3413.08 ns13.65 ns14.42 ns
DDR5-56005600 MT/s0.179 ns2800 MHz0.357 ns4014.29 ns14.82 ns15.54 ns
3813.57 ns14.11 ns14.82 ns
3612.86 ns13.39 ns14.11 ns
3412.14 ns12.68 ns13.39 ns
3010.71 ns11.25 ns11.96 ns
2810.00 ns10.54 ns11.25 ns
DDR5-60006000 MT/s0.167 ns3000 MHz0.333 ns4013.33 ns13.83 ns14.50 ns
3812.67 ns13.17 ns13.83 ns
3612.00 ns12.50 ns13.17 ns
3210.67 ns11.17 ns11.83 ns
3010.00 ns10.50 ns11.17 ns
268.67 ns9.17 ns9.83 ns
DDR5-62006200 MT/s0.161 ns3100 MHz0.323 ns4012.90 ns13.39 ns14.03 ns
3812.26 ns12.74 ns13.39 ns
3611.61 ns12.10 ns12.74 ns
DDR5-64006400 MT/s0.156 ns3200 MHz0.313 ns4012.50 ns12.97 ns13.59 ns
3811.88 ns12.34 ns12.97 ns
3611.25 ns11.72 ns12.34 ns
3410.63 ns11.09 ns11.72 ns
3210.00 ns10.47 ns11.09 ns
288.75 ns9.22 ns9.84 ns
DDR5-66006600 MT/s0.152 ns3300 MHz0.303 ns3410.30 ns10.76 ns11.36 ns
DDR5-68006800 MT/s0.147 ns3400 MHz0.294 ns3410.00 ns10.44 ns11.03 ns
DDR5-72007200 MT/s0.139 ns3600 MHz0.278 ns3610.00 ns10.42 ns10.97 ns
349.44 ns9.86 ns10.42 ns
DDR5-76007600 MT/s0.132 ns3800 MHz0.263 ns3810.00 ns10.39 ns10.92 ns
GenerationTypeData rateTransfer timeCommand rateCycle timeCAS latencyFirst wordFourth wordEighth word

Notes

[edit]
  1. ^Transfer time = 1 / Data rate.
  2. ^Command rate = Data rate / 2 for double data rate (DDR), Command rate = Data rate for single data rate (SDR).
  3. ^Cycle time = 1 / Command rate = 2 × Transfer time.
  4. ^abcNth word = [(2 × CAS latency) + (N − 1)] × Transfer time.

See also

[edit]

References

[edit]
  1. ^Stokes, Jon "Hannibal" (1998–2004)."Ars Technica RAM Guide Part II: Asynchronous and Synchronous DRAM". Ars Technica. Archived fromthe original on 2012-11-01.
  2. ^Jacob, Bruce L. (December 10, 2002),Synchronous DRAM Architectures, Organizations, and Alternative Technologies(PDF), University of Maryland
  3. ^abMemory technology evolution: an overview of system memory technologies, HP, July 2008
  4. ^Keeth, Brent; Baker, R. Jacob; Johnson, Brian; Lin, Feng (December 4, 2007).DRAM Circuit Design: Fundamental and High-Speed Topics. John Wiley & Sons.ISBN 978-0470184752.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=CAS_latency&oldid=1332106524"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp