Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bresler–Pister yield criterion

From Wikipedia, the free encyclopedia
Part of a series on
Continuum mechanics
J=Ddφdx{\displaystyle J=-D{\frac {d\varphi }{dx}}}

TheBresler–Pister yield criterion[1] is a function that was originally devised to predict the strength ofconcrete under multiaxial stress states. This yield criterion is an extension of theDrucker–Prager yield criterion and can be expressed on terms of the stress invariants as

J2=A+B I1+C I12{\displaystyle {\sqrt {J_{2}}}=A+B~I_{1}+C~I_{1}^{2}}

whereI1{\displaystyle I_{1}} is the first invariant of the Cauchy stress,J2{\displaystyle J_{2}} is the second invariant of the deviatoric part of the Cauchy stress, andA,B,C{\displaystyle A,B,C} are material constants.

Yield criteria of this form have also been used forpolypropylene[2] andpolymeric foams.[3]

The parametersA,B,C{\displaystyle A,B,C} have to be chosen with care for reasonably shapedyield surfaces. Ifσc{\displaystyle \sigma _{c}} is the yield stress in uniaxial compression,σt{\displaystyle \sigma _{t}} is the yield stress in uniaxial tension, andσb{\displaystyle \sigma _{b}} is the yield stress in biaxial compression, the parameters can be expressed as

B=(σtσc3(σt+σc))(4σb2σb(σc+σt)+σcσt4σb2+2σb(σtσc)σcσt)C=(13(σt+σc))(σb(3σtσc)2σcσt4σb2+2σb(σtσc)σcσt)A=σc3+BσcCσc2{\displaystyle {\begin{aligned}B=&\left({\cfrac {\sigma _{t}-\sigma _{c}}{{\sqrt {3}}(\sigma _{t}+\sigma _{c})}}\right)\left({\cfrac {4\sigma _{b}^{2}-\sigma _{b}(\sigma _{c}+\sigma _{t})+\sigma _{c}\sigma _{t}}{4\sigma _{b}^{2}+2\sigma _{b}(\sigma _{t}-\sigma _{c})-\sigma _{c}\sigma _{t}}}\right)\\C=&\left({\cfrac {1}{{\sqrt {3}}(\sigma _{t}+\sigma _{c})}}\right)\left({\cfrac {\sigma _{b}(3\sigma _{t}-\sigma _{c})-2\sigma _{c}\sigma _{t}}{4\sigma _{b}^{2}+2\sigma _{b}(\sigma _{t}-\sigma _{c})-\sigma _{c}\sigma _{t}}}\right)\\A=&{\cfrac {\sigma _{c}}{\sqrt {3}}}+B\sigma _{c}-C\sigma _{c}^{2}\end{aligned}}}
Derivation of expressions for parameters A, B, C
The Bresler–Pister yield criterion in terms of the principal stressesσ1,σ2,σ3{\displaystyle \sigma _{1},\sigma _{2},\sigma _{3}} is
16[(σ1σ2)2+(σ2σ3)2+(σ3σ1)2]1/2AB (σ1+σ2+σ3)C (σ1+σ2+σ3)2=0 .{\displaystyle {\cfrac {1}{\sqrt {6}}}\left[(\sigma _{1}-\sigma _{2})^{2}+(\sigma _{2}-\sigma _{3})^{2}+(\sigma _{3}-\sigma _{1})^{2}\right]^{1/2}-A-B~(\sigma _{1}+\sigma _{2}+\sigma _{3})-C~(\sigma _{1}+\sigma _{2}+\sigma _{3})^{2}=0~.}

Ifσt=σ1{\displaystyle \sigma _{t}=\sigma _{1}} is the yield stress in uniaxial tension, then

13 σtABσtCσt2=0 .{\displaystyle {\cfrac {1}{\sqrt {3}}}~\sigma _{t}-A-B\sigma _{t}-C\sigma _{t}^{2}=0~.}

Ifσc=σ1{\displaystyle -\sigma _{c}=\sigma _{1}} is the yield stress in uniaxial compression, then

13 σcA+BσcCσc2=0 .{\displaystyle {\cfrac {1}{\sqrt {3}}}~\sigma _{c}-A+B\sigma _{c}-C\sigma _{c}^{2}=0~.}

Ifσb=σ1=σ2{\displaystyle -\sigma _{b}=\sigma _{1}=\sigma _{2}} is the yield stress in equibiaxial compression, then

13 σbA+2Bσb4Cσb2=0 .{\displaystyle {\cfrac {1}{\sqrt {3}}}~\sigma _{b}-A+2B\sigma _{b}-4C\sigma _{b}^{2}=0~.}

Solving these three equations forA,B,C{\displaystyle A,B,C} (using Maple) gives us

A:=13 σcσtσb(σt+8σb3σc)(σc+σt)(2σbσc)(2σb+σt)B:=13 (σcσt)(σbσc+σbσtσcσt4σb2)(σc+σt)(2σbσc)(2σb+σt)C:=13 3σbσtσbσc2σcσt(σc+σt)(2σbσc)(2σb+σt){\displaystyle {\begin{aligned}A:=&{\cfrac {1}{\sqrt {3}}}~{\cfrac {\sigma _{c}\sigma _{t}\sigma _{b}(\sigma _{t}+8\sigma _{b}-3\sigma _{c})}{(\sigma _{c}+\sigma _{t})(2\sigma _{b}-\sigma _{c})(2\sigma _{b}+\sigma _{t})}}\\B:=&{\cfrac {1}{\sqrt {3}}}~{\cfrac {(\sigma _{c}-\sigma _{t})(\sigma _{b}\sigma _{c}+\sigma _{b}\sigma _{t}-\sigma _{c}\sigma _{t}-4\sigma _{b}^{2})}{(\sigma _{c}+\sigma _{t})(2\sigma _{b}-\sigma _{c})(2\sigma _{b}+\sigma _{t})}}\\C:=&{\cfrac {1}{\sqrt {3}}}~{\cfrac {3\sigma _{b}\sigma _{t}-\sigma _{b}\sigma _{c}-2\sigma _{c}\sigma _{t}}{(\sigma _{c}+\sigma _{t})(2\sigma _{b}-\sigma _{c})(2\sigma _{b}+\sigma _{t})}}\end{aligned}}}
Figure 1: View of the three-parameter Bresler–Pister yield surface in 3D space of principal stresses forσc=1,σt=0.3,σb=1.7{\displaystyle \sigma _{c}=1,\sigma _{t}=0.3,\sigma _{b}=1.7}
Figure 2: The three-parameter Bresler–Pister yield surface in theπ{\displaystyle \pi }-plane forσc=1,σt=0.3,σb=1.7{\displaystyle \sigma _{c}=1,\sigma _{t}=0.3,\sigma _{b}=1.7}
Figure 3: Trace of the three-parameter Bresler–Pister yield surface in theσ1σ2{\displaystyle \sigma _{1}-\sigma _{2}}-plane forσc=1,σt=0.3,σb=1.7{\displaystyle \sigma _{c}=1,\sigma _{t}=0.3,\sigma _{b}=1.7}

Alternative forms of the Bresler-Pister yield criterion

[edit]

In terms of the equivalent stress (σe{\displaystyle \sigma _{e}}) and the mean stress (σm{\displaystyle \sigma _{m}}), the Bresler–Pister yield criterion can be written as

σe=a+b σm+c σm2 ;  σe=3J2 ,  σm=I1/3 .{\displaystyle \sigma _{e}=a+b~\sigma _{m}+c~\sigma _{m}^{2}~;~~\sigma _{e}={\sqrt {3J_{2}}}~,~~\sigma _{m}=I_{1}/3~.}

The Etse-Willam[4] form of the Bresler–Pister yield criterion for concrete can be expressed as

J2=13 I1123 (σtσc2σt2) I12{\displaystyle {\sqrt {J_{2}}}={\cfrac {1}{\sqrt {3}}}~I_{1}-{\cfrac {1}{2{\sqrt {3}}}}~\left({\cfrac {\sigma _{t}}{\sigma _{c}^{2}-\sigma _{t}^{2}}}\right)~I_{1}^{2}}

whereσc{\displaystyle \sigma _{c}} is the yield stress in uniaxial compression andσt{\displaystyle \sigma _{t}} is the yield stress in uniaxial tension.

TheGAZT yield criterion[5] for plastic collapse of foams also has a form similar to the Bresler–Pister yield criterion and can be expressed as

J2={13 σt0.033ρρm σt I1213 σc+0.033ρρm σc I12{\displaystyle {\sqrt {J_{2}}}={\begin{cases}{\cfrac {1}{\sqrt {3}}}~\sigma _{t}-0.03{\sqrt {3}}{\cfrac {\rho }{\rho _{m}~\sigma _{t}}}~I_{1}^{2}\\-{\cfrac {1}{\sqrt {3}}}~\sigma _{c}+0.03{\sqrt {3}}{\cfrac {\rho }{\rho _{m}~\sigma _{c}}}~I_{1}^{2}\end{cases}}}

whereρ{\displaystyle \rho } is the density of the foam andρm{\displaystyle \rho _{m}} is the density of the matrix material.

References

[edit]
  1. ^Bresler, B. and Pister, K.S., (1985),Strength of concrete under combined stresses, ACI Journal, vol. 551, no. 9, pp. 321–345.
  2. ^Pae, K. D., (1977),The macroscopic yield behavior of polymers in multiaxial stress fields, Journal of Materials Science, vol. 12, no. 6, pp. 1209-1214.
  3. ^Kim, Y. and Kang, S., (2003),Development of experimental method to characterize pressure-dependent yield criteria for polymeric foams. Polymer Testing, vol. 22, no. 2, pp. 197-202.
  4. ^Etse, G. and Willam, K., (1994),Fracture energy formulation for inelastic behavior of plain concrete, Journal of Engineering Mechanics, vol. 120, no. 9, pp. 1983-2011.
  5. ^Gibson, L. J.,Ashby, M. F., Zhang, J., and Triantafillou, T. C. (1989).Failure surfaces for cellular materials under multiaxial loads. I. Modelling. International Journal of Mechanical Sciences, vol. 31, no. 9, pp. 635–663.

See also

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bresler–Pister_yield_criterion&oldid=1284266705"
Categories:
Hidden category:

[8]ページ先頭

©2009-2026 Movatter.jp