Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Boron trioxide

From Wikipedia, the free encyclopedia
Boron trioxide
Crystal structure of B2O3[1]
Crystal structure of B2O3[1]
Names
IUPAC name
Diboron trioxide
Other names
boron oxide, diboron trioxide, boron sesquioxide, boric oxide, boria
Boric anhydride
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.013.751Edit this at Wikidata
EC Number
  • 215-125-8
11108
RTECS number
  • ED7900000
UNII
  • InChI=1S/B2O3/c3-1-5-2-4 checkY
    Key: JKWMSGQKBLHBQQ-UHFFFAOYSA-N checkY
  • InChI=1/B2O3/c3-1-5-2-4
    Key: JKWMSGQKBLHBQQ-UHFFFAOYAI
  • O=BOB=O
Properties
B2O3
Molar mass69.6182 g/mol
Appearancewhite, glassy solid
Density2.460 g/cm3, liquid;

2.55 g/cm3, trigonal;
3.11–3.146 g/cm3, monoclinic

Melting point450 °C (842 °F; 723 K) (trigonal)
510 °C (tetrahedral)
Boiling point1,860 °C (3,380 °F; 2,130 K) ,[2] sublimes at 1500 °C[3]
1.1 g/100mL (10 °C)
3.3 g/100mL (20 °C)
15.7 g/100mL (100 °C)
Solubilitypartially soluble inmethanol
Acidity (pKa)~ 4
−39.0·10−6 cm3/mol
Thermochemistry
66.9 J/(mol⋅K)
80.8 J/(mol⋅K)
−1254 kJ/mol
−832 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Irritant[4]
GHS labelling:
GHS08: Health hazard
Danger
H360FD
P201,P202,P281,P308+P313,P405,P501
NFPA 704 (fire diamond)
Flash pointnoncombustible
Lethal dose or concentration (LD, LC):
3163 mg/kg (oral, mouse)[5]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3[4]
REL (Recommended)
TWA 10 mg/m3[4]
IDLH (Immediate danger)
2000 mg/m3[4]
Supplementary data page
Boron trioxide (data page)
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Boron trioxide ordiboron trioxide is theoxide of boron with the formulaB2O3. It is a colorless transparent solid, almost always glassy (amorphous), which can be crystallized only with great difficulty. It is also calledboric oxide[6] orboria.[7] It has many important industrial applications, chiefly in ceramics as aflux for glazes and enamels and in the production ofglasses.

Structure

[edit]

Boron trioxide has three known forms, one amorphous and two crystalline.

Amorphous form

[edit]

The amorphous form (g-B2O3) is by far the most common. It is thought to be composed ofboroxol rings which are six-membered rings composed of alternating 3-coordinate boron and 2-coordinate oxygen.

Because of the difficulty of building disordered models at the correct density with many boroxol rings, this view was initially controversial, but such models have recently been constructed and exhibit properties in excellent agreement with experiment.[8][9] It is now recognized, from experimental and theoretical studies,[10][11][12][13][14] that the fraction of boron atoms belonging to boroxol rings in glassyB2O3 is somewhere between 0.73 and 0.83, with 0.75 = 3/4 corresponding to a 1:1 ratio between ring and non-ring units. The number of boroxol rings decays in the liquid state with increasing temperature.[15][16]

Crystalline α form

[edit]

The crystalline form (α-B2O3) is exclusively composed of BO3 triangles. Its crystal structure was initially believed to be the enantiomorphic space groups P31(#144) and P32(#145), like γ-glycine;[17][18] but was later revised to the enantiomorphic space groups P3121(#152) and P3221(#154) in thetrigonal crystal system, like α-quartz[19]

Crystallization of α-B2O3 from the molten state at ambient pressure is strongly kinetically disfavored (compare liquid and crystal densities). It can be obtained with prolongedannealing of the amorphous solid ~200 °C under at least 10 kbar of pressure.[20][1]

Crystalline β form

[edit]

The trigonal network undergoes acoesite-like transformation tomonoclinic β-B2O3 at several gigapascals (9.5 GPa).[21]

Preparation

[edit]

Boron trioxide is produced by treatingborax withsulfuric acid in afusion furnace. At temperatures above 750 °C, the molten boron oxide layer separates out fromsodium sulfate. It is then decanted, cooled and obtained in 96–97% purity.[3]

Another method is heatingboric acid above ~300 °C. Boric acid will initially decompose into steam, (H2O(g)) andmetaboric acid (HBO2) at around 170 °C, and further heating above 300 °C will produce more steam and diboron trioxide. The reactions are:

H3BO3 → HBO2 + H2O
2 HBO2B2O3 + H2O

Boric acid goes to anhydrous microcrystallineB2O3 in a heated fluidized bed.[22] Carefully controlled heating rate avoids gumming as water evolves.

Boron oxide will also form whendiborane (B2H6) reacts with oxygen in the air or trace amounts of moisture:

2B2H6(g) + 3O2(g) → 2B2O3(s) + 6H2(g)
B2H6(g) + 3H2O(g) →B2O3(s) + 6H2(g)[23]

Reactions

[edit]

Molten boron oxide attacks silicates. Containers can be passivated internally with a graphitized carbon layer obtained by thermal decomposition of acetylene.[24]

Applications

[edit]

See also

[edit]

References

[edit]
  1. ^abGurr, G. E.; Montgomery, P. W.; Knutson, C. D.; Gorres, B. T. (1970). "The Crystal Structure of Trigonal Diboron Trioxide".Acta Crystallographica B.26 (7):906–915.Bibcode:1970AcCrB..26..906G.doi:10.1107/S0567740870003369.
  2. ^High temperature corrosion and materials chemistry: proceedings of the Per Kofstad Memorial Symposium. Proceedings of the Electrochemical Society. The Electrochemical Society. 2000. p. 496.ISBN 978-1-56677-261-7.
  3. ^abPatnaik, P. (2003).Handbook of Inorganic Chemical Compounds. McGraw-Hill. p. 119.ISBN 978-0-07-049439-8. Retrieved2009-06-06.
  4. ^abcdNIOSH Pocket Guide to Chemical Hazards."#0060".National Institute for Occupational Safety and Health (NIOSH).
  5. ^"Boron oxide".Immediately Dangerous to Life or Health Concentrations.National Institute for Occupational Safety and Health.
  6. ^L. McCulloch (1937): "A Crystalline Boric Oxide".Journal of the American Chemical Society, volume 59, issue 12, pages 2650–2652.doi:10.1021/ja01291a05
  7. ^I.Vishnevetsky and M.Epstein (2015): "Solar carbothermic reduction of alumina, magnesia and boria under vacuum".Solar Energy, volume 111, pages 236-251doi:10.1016/j.solener.2014.10.039
  8. ^Ferlat, G.; Charpentier, T.; Seitsonen, A. P.; Takada, A.; Lazzeri, M.; Cormier, L.; Calas, G.; Mauri. F. (2008). "Boroxol Rings in Liquid and Vitreous B2O3 from First Principles".Phys. Rev. Lett.101 (6) 065504.Bibcode:2008PhRvL.101f5504F.doi:10.1103/PhysRevLett.101.065504.PMID 18764473.
  9. ^Ferlat, G.; Seitsonen, A. P.; Lazzeri, M.; Mauri, F. (2012). "Hidden polymorphs drive vitrification in B2O3".Nature Materials Letters.11 (11):925–929.arXiv:1209.3482.Bibcode:2012NatMa..11..925F.doi:10.1038/NMAT3416.PMID 22941329.S2CID 11567458.
  10. ^Hung, I.; et al. (2009). "Determination of the bond-angle distribution in vitreous B2O3 by rotation (DOR) NMR spectroscopy".Journal of Solid State Chemistry.182 (9):2402–2408.Bibcode:2009JSSCh.182.2402H.doi:10.1016/j.jssc.2009.06.025.
  11. ^Soper, A. K. (2011)."Boroxol rings from diffraction data on vitreous boron trioxide".J. Phys.: Condens. Matter.23 (36) 365402.Bibcode:2011JPCM...23.5402S.doi:10.1088/0953-8984/23/36/365402.PMID 21865633.S2CID 5291179.
  12. ^Joo, C.; et al. (2000). "The ring structure of boron trioxide glass".Journal of Non-Crystalline Solids.261 (1–3):282–286.Bibcode:2000JNCS..261..282J.doi:10.1016/s0022-3093(99)00609-2.
  13. ^Zwanziger, J. W. (2005). "The NMR response of boroxol rings: a density functional theory study".Solid State Nuclear Magnetic Resonance.27 (1–2):5–9.Bibcode:2005SSNMR..27....5Z.doi:10.1016/j.ssnmr.2004.08.004.PMID 15589722.
  14. ^Micoulaut, M. (1997). "The structure of vitreous B2O3 obtained from a thermostatistical model of agglomeration".Journal of Molecular Liquids.71 (2–3):107–114.doi:10.1016/s0167-7322(97)00003-2.
  15. ^Alderman, O. L. G. Ferlat, G. Baroni, A. Salanne, M. Micoulaut, M. Benmore, C. J. Lin, A. Tamalonis, A. Weber, J. K. R. (2015)."Liquid B2O3 up to 1700K: X-ray diffraction and boroxol ring dissolution"(PDF).Journal of Physics: Condensed Matter.27 (45) 455104.Bibcode:2015JPCM...27S5104A.doi:10.1088/0953-8984/27/45/455104.PMID 26499978.S2CID 21783488.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^Alderman, Oliver (2025-02-03)."Boroxol ring dissolution in molten and glassy B2O3 by neutron and x-ray diffraction difference methods".The Journal of Chemical Physics.162 (5): 054502.doi:10.1063/5.0248235.
  17. ^Gurr, G. E.; Montgomery, P. W.; Knutson, C. D.; Gorres, B. T. (1970). "The crystal structure of trigonal diboron trioxide".Acta Crystallographica B.26 (7):906–915.Bibcode:1970AcCrB..26..906G.doi:10.1107/S0567740870003369.
  18. ^Strong, S. L.; Wells, A. F.; Kaplow, R. (1971). "On the crystal structure of B2O3".Acta Crystallographica B.27 (8):1662–1663.Bibcode:1971AcCrB..27.1662S.doi:10.1107/S0567740871004515.
  19. ^Effenberger, H.; Lengauer, C. L.; Parthé, E. (2001). "Trigonal B2O3 with Higher Space-Group Symmetry: Results of a Reevaluation".Monatshefte für Chemie.132 (12):1515–1517.doi:10.1007/s007060170008.S2CID 97795834.
  20. ^Aziz, M. J.; Nygren, E.; Hays, J. F.; Turnbull, D. (1985)."Crystal Growth Kinetics of Boron Oxide Under Pressure".Journal of Applied Physics.57 (6): 2233.Bibcode:1985JAP....57.2233A.doi:10.1063/1.334368.
  21. ^Brazhkin, V. V.; Katayama, Y.; Inamura, Y.; Kondrin, M. V.; Lyapin, A. G.; Popova, S. V.; Voloshin, R. N. (2003)."Structural transformations in liquid, crystalline and glassy B2O3 under high pressure".JETP Letters.78 (6):393–397.Bibcode:2003JETPL..78..393B.doi:10.1134/1.1630134.S2CID 189764568.
  22. ^Kocakuşak, S.; Akçay, K.; Ayok, T.; Koöroğlu, H. J.; Koral, M.; Savaşçi, Ö. T.; Tolun, R. (1996). "Production of anhydrous, crystalline boron oxide in fluidized bed reactor".Chemical Engineering and Processing.35 (4):311–317.Bibcode:1996CEPPI..35..311K.doi:10.1016/0255-2701(95)04142-7.
  23. ^AirProducts (2011)."Diborane Storage & Delivery"(PDF). Archived fromthe original(PDF) on 2015-02-04. Retrieved2013-08-21.{{cite journal}}:Cite journal requires|journal= (help)
  24. ^Morelock, C. R. (1961). "Research Laboratory Report #61-RL-2672M". General Electric.{{cite journal}}:Cite journal requires|journal= (help)

External links

[edit]
Boron pnictogenides
Boron halides
Acids
Boranes
Boron oxides and sulfides
Carbides
Organoboron compounds
Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state
Related
Oxides are sorted byoxidation state.Category:Oxides
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Boron_trioxide&oldid=1314529823"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp