Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Boron trifluoride

From Wikipedia, the free encyclopedia
Boron trifluoride
Boron trifluoride in 2D
Boron trifluoride in 2D
Boron trifluoride in 3D
Boron trifluoride in 3D
Names
IUPAC name
Boron trifluoride
Systematic IUPAC name
Trifluoroborane
Other names
Boron fluoride, Trifluoroborane
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.028.699Edit this at Wikidata
EC Number
  • 231-569-5
RTECS number
  • ED2275000
UNII
UN numbercompressed:1008.
boron trifluoride dihydrate:2851.
  • InChI=1S/BF3/c2-1(3)4 checkY
    Key: WTEOIRVLGSZEPR-UHFFFAOYSA-N checkY
  • FB(F)F
  • [F+]=[B-](F)F
Properties
BF3
Molar mass67.82 g/mol (anhydrous)
103.837 g/mol (dihydrate)
Appearancecolorless gas (anhydrous)
colorless liquid (dihydrate)
OdorPungent
Density0.00276 g/cm3 (anhydrous gas)
1.64 g/cm3 (dihydrate)
Melting point−126.8 °C (−196.2 °F; 146.3 K)
Boiling point−100.3 °C (−148.5 °F; 172.8 K)
exothermic decomposition[1] (anhydrous)
very soluble (dihydrate)
Solubilitysoluble inbenzene,toluene,hexane,chloroform andmethylene chloride
Vapor pressure>50 atm (20 °C)[2]
0 D
Thermochemistry
50.46 J/(mol·K)
254.3 J/(mol·K)
−1137 kJ/mol
−1120 kJ/mol
Hazards[4][5]
GHS labelling:
Acute Tox. 2Skin Corr. 1AGHS08: Health hazard
Danger
H314,H330,H335,H373
P260,P280,P303+P361+P353,P304+P340,P305+P351+P338,P310,P403+P233
NFPA 704 (fire diamond)
Flash pointNonflammable
Lethal dose or concentration (LD, LC):
1227 ppm (mouse, 2 hr)
39 ppm (guinea pig, 4 hr)
418 ppm (rat, 4 hr)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
C 1 ppm (3 mg/m3)[2]
REL (Recommended)
C 1 ppm (3 mg/m3)[2]
IDLH (Immediate danger)
25 ppm[2]
Safety data sheet (SDS)ICSC0231
Related compounds
Otheranions
Othercations
Related compounds
Boron monofluoride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Boron trifluoride is theinorganic compound with theformulaBF3. This pungent, colourless, andtoxic gas forms white fumes in moist air. It is a usefulLewis acid and a versatile building block for otherboron compounds.

Structure and bonding

[edit]

The geometry of amolecule ofBF3 istrigonal planar. Its D3hsymmetry conforms with the prediction ofVSEPR theory. The molecule has no dipole moment by virtue of its high symmetry. The molecule isisoelectronic with the carbonate anion,CO2−3.

BF3 is commonly referred to as "electron deficient," a description that is reinforced by itsexothermic reactivity towardLewis bases.

In theboron trihalides,BX3, the length of the B–X bonds (1.30 Å) is shorter than would be expected for single bonds,[7] and this shortness may indicate stronger B–Xπ-bonding in the fluoride. A facile explanation invokes the symmetry-allowed overlap of a p orbital on the boron atom with the in-phase combination of the three similarly oriented p orbitals on fluorine atoms.[7] Others point to the ionic nature of the bonds inBF3.[8]

Boron trifluoride pi bonding diagram

Synthesis and handling

[edit]

BF3 is manufactured by the reaction of boron oxides withhydrogen fluoride:

B2O3 + 6 HF → 2 BF3 + 3 H2O

Typically the HF is producedin situ from sulfuric acid andfluorite (CaF2).[9] Approximately 2300–4500 tonnes of boron trifluoride are produced every year.[10]

Laboratory scale

[edit]

For laboratory scale reactions,BF3 is usually produced in situ usingboron trifluoride etherate, which is a commercially available liquid.[how?]

Laboratory routes to the solvent-free materials are numerous. A well documented route involves the thermal decomposition ofdiazonium salts of[BF4]:[11]

[PhN2]+[BF4]PhF + BF3 +N2

It forms by treatment of a mixtureboron trioxide andsodium tetrafluoroborate with sulfuric acid:[12]

6 Na[BF4] + B2O3 + 6 H2SO4 → 8 BF3 + 6NaHSO4 + 3 H2O

Alternatively,boron tribromide converts variousorganofluorine compounds toorganobromines, evolving the trifluoride gas:[13]

3 R–F + BBr3 → 3 R–Br + BF3

Properties

[edit]

Anhydrous boron trifluoride has aboiling point of −100.3 °C and acritical temperature of −12.3 °C, so that it can be stored as a refrigerated liquid only between those temperatures. Storage or transport vessels should be designed to withstand internal pressure, since a refrigeration system failure could cause pressures to rise to thecritical pressure of 49.85 bar (4.985 MPa).[14]

Boron trifluoride is corrosive. Suitable metals for equipment handling boron trifluoride includestainless steel,monel, andhastelloy. In presence of moisture it corrodes steel, including stainless steel. It reacts withpolyamides.Polytetrafluoroethylene,polychlorotrifluoroethylene,polyvinylidene fluoride, andpolypropylene show satisfactory resistance. Thegrease used in the equipment should befluorocarbon based, as boron trifluoride reacts with the hydrocarbon-based ones.[15]

Reactions

[edit]

Unlike the aluminium and gallium trihalides, the boron trihalides are allmonomeric. They undergo rapid halide exchange reactions:

BF3 +BCl3 → BF2Cl + BCl2F

Because of the facility of this exchange process, the mixed halides cannot be obtained in pure form.

Boron trifluoride is a versatileLewis acid that formsadducts with suchLewis bases asfluoride andethers:

CsF + BF3 → Cs[BF4]
O(CH2CH3)2 + BF3 → BF3·O(CH2CH3)2

Tetrafluoroborate salts are commonly employed asnon-coordinating anions. The adduct withdiethyl ether, boron trifluoride diethyl etherate, or justboron trifluoride etherate, (BF3·O(CH2CH3)2) is a conveniently handledliquid and consequently is widely encountered as a laboratory source ofBF3.[16] Another common adduct is the adduct withdimethyl sulfide (BF3·S(CH3)2), which can be handled as a neat liquid.[17]

Comparative Lewis acidity

[edit]

All three lighter boron trihalides,BX3 (X = F, Cl, Br) form stable adducts with common Lewis bases. Their relative Lewis acidities can be evaluated in terms of the relative exothermicities of the adduct-forming reaction. Such measurements have revealed the following sequence for the Lewis acidity:

BF3 <BCl3 <BBr3 <BI3 (strongest Lewis acid)

This trend is commonly attributed to the degree ofπ-bonding in the planar boron trihalide that would be lost uponpyramidalization of theBX3 molecule.[18] which follows this trend:

BF3 >BCl3 >BBr3 <BI3 (most easily pyramidalized)

The criteria for evaluating the relative strength ofπ-bonding are not clear, however.[7] One suggestion is that the F atom is small compared to the larger Cl and Br atoms. As a consequence, the bond length between boron and the halogen increases while going from fluorine to iodine hence spatial overlap between the orbitals becomes more difficult. The lone pair electron in pz of F is readily and easily donated and overlapped to empty pz orbital of boron. As a result, the pi donation of F is greater than that of Cl or Br.

In an alternative explanation, the low Lewis acidity forBF3 is attributed to the relative weakness of the bond in the adductsF3B−L.[19][20]

Yet another explanation might be found in the fact that the pz orbitals in each higher period have an extra nodal plane and opposite signs of the wave function on each side of that plane. This results in bonding and antibonding regions within the same bond, diminishing the effective overlap and so lowering the π-donating blockage of the acidity.[original research?]

Hydrolysis

[edit]

Boron trifluoride reacts with water to giveboric acid andfluoroboric acid. The reaction commences with the formation of the aquo adduct,H2O−BF3, which then loses HF that gives fluoroboric acid with boron trifluoride.[21]

4 BF3 + 3 H2O → 3 H[BF4] + B(OH)3

The heavier trihalides also hydrolyze, but toboric andhydrohalic acids, possibly due to the lower stability of the tetrahedral ions[BCl4] and[BBr4]. Because of the high acidity of fluoroboric acid, the fluoroborate ion can be used to isolate particularly electrophilic cations, such asdiazonium ions, that are otherwise difficult to isolate as solids.

Uses

[edit]

Organic chemistry

[edit]

Boron trifluoride is most importantly used as a reagent inorganic synthesis, typically as aLewis acid.[10][22] Examples include:

Niche uses

[edit]

Other, less common uses for boron trifluoride include:

Discovery

[edit]

Boron trifluoride was discovered in 1808 byJoseph Louis Gay-Lussac andLouis Jacques Thénard, who were trying to isolate "fluoric acid" (i.e.,hydrofluoric acid) by combiningcalcium fluoride with vitrifiedboric acid. The resulting vapours failed to etch glass, so they named itfluoboric gas.[26][27]

See also

[edit]

References

[edit]
  1. ^Prudent Practices in the Laboratory. 16 August 1995.doi:10.17226/4911.ISBN 978-0-309-05229-0.Archived from the original on 14 December 2014. Retrieved7 May 2018.{{cite book}}:|website= ignored (help)
  2. ^abcdNIOSH Pocket Guide to Chemical Hazards."#0062".National Institute for Occupational Safety and Health (NIOSH).
  3. ^"Boron trifluoride".Immediately Dangerous to Life or Health Concentrations.National Institute for Occupational Safety and Health.
  4. ^Index no. 005-001-00-X of Annex VI, Part 3, to Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.Official Journal of the European Union L353, 31 December 2008, pp. 1–1355 at p 341.
  5. ^"Boron trifluoride".Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services (NIOSH) Publication No. 2005-149. Washington, DC: Government Printing Office. 2005.ISBN 9780160727511..
  6. ^Inc, New Environment."New Environment Inc. - NFPA Chemicals".www.newenv.com.Archived from the original on 27 August 2016. Retrieved7 May 2018.{{cite web}}:|last= has generic name (help)
  7. ^abcGreenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  8. ^Gillespie, Ronald J. (1998). "Covalent and Ionic Molecules: Why Are BeF2 and AlF3 High Melting Point Solids whereas BF3 and SiF4 Are Gases?".Journal of Chemical Education.75 (7): 923.Bibcode:1998JChEd..75..923G.doi:10.1021/ed075p923.
  9. ^Holleman, A. F.; Wiberg, E. (2001).Inorganic Chemistry. San Diego: Academic Press.ISBN 0-12-352651-5.
  10. ^abBrotherton, R. J.; Weber, C. J.; Guibert, C. R.; Little, J. L. "Boron Compounds".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a04_309.ISBN 978-3-527-30673-2.
  11. ^Flood, D. T. (1933)."Fluorobenzene".Organic Syntheses.13: 46;Collected Volumes, vol. 2, p. 295.
  12. ^abBrauer, Georg (1963).Handbook of Preparative Inorganic Chemistry. Vol. 1 (2nd ed.). New York: Academic Press. p. 220 & 773.ISBN 978-0121266011.{{cite book}}:ISBN / Date incompatibility (help)
  13. ^Hegedüs, Kristof (11 Jan 2019)."Performing a halogen exchange, a HalEx reaction on..."Pictures from an Organic Chemistry Laboratory.Tumblr.Archived from the original on 19 Jan 2019. Retrieved12 January 2025.
  14. ^Yaws, C. L., ed. (1999).Chemical Properties Handbook. McGraw-Hill. p. 25.
  15. ^"Boron trifluoride".Gas Encyclopedia.Air Liquide. 2016-12-15.Archived from the original on 2006-12-06.
  16. ^Cornel, Veronica; Lovely, Carl J. (2007). "Boron Trifluoride Etherate".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/9780470842898.rb249.pub2.ISBN 978-0471936237.S2CID 100921225.
  17. ^Heaney, Harry (2001). "Boron Trifluoride-Dimethyl Sulfide".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.rb247.ISBN 0471936235.
  18. ^Cotton, F. Albert;Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999),Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience,ISBN 0-471-19957-5
  19. ^Boorman, P. M.; Potts, D. (1974). "Group V Chalcogenide Complexes of Boron Trihalides".Canadian Journal of Chemistry.52 (11):2016–2020.doi:10.1139/v74-291.
  20. ^Brinck, T.; Murray, J. S.; Politzer, P. (1993). "A Computational Analysis of the Bonding in Boron Trifluoride and Boron Trichloride and their Complexes with Ammonia".Inorganic Chemistry.32 (12):2622–2625.doi:10.1021/ic00064a008.
  21. ^Wamser, C. A. (1951). "Equilibria in the System Boron Trifluoride–Water at 25°".Journal of the American Chemical Society.73 (1):409–416.Bibcode:1951JAChS..73..409W.doi:10.1021/ja01145a134.
  22. ^Heaney, H. (2001). "Boron Trifluoride".Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.rb250.ISBN 0-471-93623-5.
  23. ^Mani, Rama I.; Erbert, Larry H.; Manise, Daniel (1991)."Boron Trifluoride in the Synthesis of Plant Phenolics: Synthesis of Phenolic Ketones and Phenyl Stryl Ketones"(PDF).Journal of Tennessee Academy of Science.66 (1):1–8. Archived fromthe original(PDF) on 27 October 2016. Retrieved27 October 2016.
  24. ^Sowa, F. J.; Hennion, G. F.; Nieuwland, J. A. (1935). "Organic Reactions with Boron Fluoride. IX. The Alkylation of Phenol with Alcohols".Journal of the American Chemical Society.57 (4):709–711.Bibcode:1935JAChS..57..709S.doi:10.1021/ja01307a034.
  25. ^"Boron Trifluoride (BF3) Applications".Honeywell. Archived fromthe original on 2012-01-29.
  26. ^Gay-Lussac, J. L.; Thénard, L. J. (1809). "Sur l'acide fluorique".Annales de Chimie.69:204–220.
  27. ^Gay-Lussac, J. L.; Thénard, L. J. (1809)."Des propriétés de l'acide fluorique et sur-tout de son action sur le métal de la potasse".Mémoires de Physique et de Chimie de la Société d'Arcueil.2:317–331.

External links

[edit]
Boron pnictogenides
Boron halides
Acids
Boranes
Boron oxides and sulfides
Carbides
Organoboron compounds
Salts and covalent derivatives of thefluoride ion
HF?HeF2
LiFBeF2BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
+N
+NO3
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2Ne
NaFMgF2AlF
AlF3
SiF4P2F4
PF3
PF5
+PO4
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KFCaF
CaF2
ScF3TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbFSrF
SrF2
YF3ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsFBaF2 LuF3HfF4TaF5WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrFRaF2 LrF3RfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaF3CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3SmF
SmF2
SmF3
EuF2
EuF3
GdF3TbF3
TbF4
DyF2
DyF3
DyF4
HoF3ErF3TmF2
TmF3
YbF2
YbF3
AcF3ThF2
ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
FmMdF3No
PF6,AsF6,SbF6 compounds
AlF2−5,AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6,GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Boron_trifluoride&oldid=1301340054"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp