Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Boron monofluoride

From Wikipedia, the free encyclopedia
Boron monofluoride
Names
Other names
Boron fluoride

Boron(I) fluoride
Fluoroboronene

Fluoroborylene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.033.970Edit this at Wikidata
EC Number
  • 237-383-0
UNII
  • InChI=1S/BF/c1-2 checkY
    Key: YFSQMOVEGCCDJL-UHFFFAOYSA-N checkY
  • [BH0]F
  • [B-]=[F+]
  • [B-2]#[F+2]
Properties
BF
Molar mass29.81 g·mol−1
Thermochemistry
200.48 J K−1 mol−1
115.90 kJ mol−1
Related compounds
Carbon monoxide,dinitrogen,nitrosonium,cyanide,acetylide
Related compounds
aluminium monofluoride
aluminium monochloride
aluminium monoiodide
gallium monofluoride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
Chemical compound

Boron monofluoride orfluoroborylene is a chemical compound with the formula BF, one atom ofboron and one offluorine. It is an unstable gas, but it is a stableligand ontransition metals, in the same way ascarbon monoxide. It is asubhalide, containing fewer than the normal number of fluorine atoms, compared withboron trifluoride. It can also be called aborylene, as it contains boron with two unshared electrons. BF isisoelectronic with carbon monoxide anddinitrogen; each molecule has 14 electrons.[1]

Structure

[edit]

The experimental B–Fbond length is 1.26267 Å.[2][3][4] Despite beingisoelectronic to CO and N2, each of which is typically described as having atriple bond, computational studies generally agree that the truebond order is much lower than 3. One reported computed bond order for the molecule is 1.4, compared with 2.6 for CO and 3.0 for N2.[5]

Lewis dot diagram structures show three formal alternatives for describing bonding in boron monofluoride.

BF is unusual in that thedipole moment is inverted, with fluorine having a positive charge even though it is the moreelectronegative element. This is explained by the 2sp orbitals of boron being reoriented and having a higher electron density.Backbonding, or the transfer of π orbital electrons for the fluorine atom, is not required to explain the polarization.[6]

Preparation

[edit]

Boron monofluoride can be prepared by passingboron trifluoride gas at 2000 °C, at reduced pressure (below 1 mm Hg) over a boron rod. It can be condensed at liquid nitrogen temperatures (−196 °C).[7]

Properties

[edit]

Boron monofluoride molecules have a dissociation energy of 7.8 eV or heat of formation −27.5±3 kcal/mole[1][8] or 757±14 kJ/mol.[2] The first ionization potential is 11.115 eV.[2] Thespectroscopic constants vibrational frequency ωe of BF+ (X2Σ+) is 1765 cm−1 and for neutral BF (X1Σ+) it is 1402.1 cm−1.[2][9] The anharmonicity of BF is 11.84 cm−1.[9]

Reactions

[edit]

BF can react with itself to form polymers of boron containing fluorine with between 10 and 14 boron atoms. BF reacts withBF3 to formB2F4. BF and B2F4 further combine to form B3F5. B3F5 is unstable above −50 °C and forms B8F12. This substance is a yellow oil.[7]

BF reacts with acetylenes to make the 1,4-diboracyclohexadiene ring system. BF can condense with2-butyne forming 1,4-difluoro-2,3,5,6-tetramethyl-1,4-diboracyclohexadiene. Also, it reacts withacetylene to make 1,4-difluoro-1,4-diboracyclohexadiene.[7] Propene reacts to make a mix of cyclic and non-cyclic molecules which may contain BF or BF2.[2]

BF hardly reacts withC2F4 orSiF4.[2] BF does react witharsine,carbon monoxide,phosphorus trifluoride,phosphine, andphosphorus trichloride to make adducts like (BF2)3B•AsH3, (BF2)3B•CO, (BF2)3B•PF3, (BF2)3B•PH3, and (BF2)3B•PCl3.[2]

BF reacts with oxygen: BF + O2OBF + O; with chlorine: BF + Cl2 → ClBF + Cl; and withnitrogen dioxide BF + NO2OBF + NO.[10]

Ligand

[edit]

A naïve analysis would suggest that BF is isoelectronic with carbon monoxide (CO) and so could form similar compounds tometal carbonyls. As discussed above (see:§ Structure), BF has a much lower bond order, so that thevalence shell around boron is unfilled. Consequently, BF as a ligand is much moreLewis acidic; it tends to form higher-order bonds to metal centers, and can also bridge between two or three metal atoms (μ2 and μ3).[11]

Working with BF as a ligand is difficult due to its instability in the free state.[12] Instead, most routes tend to use derivatives ofBF3 that decompose oncecoordinated.

In a 1968 conference report, Kämpfer et al claimed to produce Fe(BF)(CO)4 via reaction ofB2F4 withFe(CO)5, but modern chemists have not reproduced the synthesis, and the original compound has no crystallographic characterization.[13][14] The first modern demonstration of BFcoordinated to atransition element is due to Vidovic and Aldrige, who produced[(C5H5)Ru(CO)2]22-BF) (with BF bridging bothruthenium atoms) in 2009.[15] To make the compound, Vidovic and Aldridge reacted NaRu(CO)2(C5H5) with (Et2O)·BF3; the boron monofluoride ligand then formed in-place.[14]

Vidovic and Aldridge also developed a substance with the formula (PF3)4FeBF by reacting iron vapour with B2F4 and PF3.[2] Hafnium, thorium, titanium, and zirconium can form a difluoride with a BF ligand at the low temperature of 6K. These come about by reacting the atomic metal with BF3.[2]

The first fully characterized molecule featuring BF as a terminal ligand was synthesized by Drance and Figueroa in 2019, bysterically hindering the formation of a dimer. In the molecule, boron isdouble-bonded toiron.[16]

FBScF2, FBYF2, FBLaF2, and FBCeF2 have been prepared in a solid neon matrix by reacting atomic metals with boron trifluoride.[17]

References

[edit]
  1. ^abHildenbrand, Donald L.; Murad, Edmond (1965). "Dissociation Energy of Boron Monofluoride from Mass-Spectrometric Studies".The Journal of Chemical Physics.43 (4): 1400.Bibcode:1965JChPh..43.1400H.doi:10.1063/1.1696932.
  2. ^abcdefghiVidovic, Dragoslav; Aldridge, Simon (2011). "Coordination chemistry of group 13 monohalides".Chemical Science.2 (4): 601.doi:10.1039/C0SC00508H.
  3. ^Nesbet, R. K. (1964). "Electronic Structure of N2, CO, and BF".The Journal of Chemical Physics.40 (12):3619–3633.Bibcode:1964JChPh..40.3619N.doi:10.1063/1.1725063.
  4. ^Cazzoli, G.; Cludi, L.; Degli Esposti, C.; Dore, L. (1989). "The millimeter and submillimeter-wave spectrum of boron monofluoride: Equilibrium structure".Journal of Molecular Spectroscopy.134 (1):159–167.Bibcode:1989JMoSp.134..159C.doi:10.1016/0022-2852(89)90138-0.ISSN 0022-2852.
  5. ^Martinie, R. J.; Bultema, J. J.; van der Wal, M. N.; Burkhart, B. J.; van der Griend, D. A. & de Kock, R. L. (2011). "Bond Order and Chemical Properties of BF, CO, and N2".Journal of Chemical Education.88 (8):1094–1097.Bibcode:2011JChEd..88.1094M.doi:10.1021/ed100758t.
  6. ^Fantuzzi, Felipe; Cardozo, Thiago Messias; Nascimento, Marco Antonio Chaer (28 May 2015). "Nature of the Chemical Bond and Origin of the Inverted Dipole Moment in Boron Fluoride: A Generalized Valence Bond Approach".The Journal of Physical Chemistry A.119 (21):5335–5343.Bibcode:2015JPCA..119.5335F.doi:10.1021/jp510085r.PMID 25531385.
  7. ^abcTimms, P. L. (1972)."Low Temperature Condensation".Advances in Inorganic Chemistry and Radiochemistry. Academic Press. p. 143.ISBN 0-12-023614-1.
  8. ^Eyring, Leroy (1967).Advances in High Temperature Chemistry volume 1. Academic Press. p. 70.ISBN 9781483224343.
  9. ^abDyke, John M.; Kirby, Colin; Morris, Alan (1983). "Study of the ionization process BF+ (X2Σ+ ) ← BF(X1Σ+ ) by high-temperature photoelectron spectroscopy".J. Chem. Soc., Faraday Trans. 2.79 (3):483–490.doi:10.1039/F29837900483.
  10. ^Light, G. C.; Herm, R. R.; Matsumoto, J. H. (November 1985)."Kinetics of some gas-phase elementary reactions of boron monofluoride"(PDF).The Journal of Physical Chemistry.89 (23):5066–5074.doi:10.1021/j100269a036.Archived(PDF) from the original on June 1, 2022.
  11. ^Xu, Liancai; Li, Qian-shu; Xie, Yaoming; King, R. Bruce; Schaefer, Henry F. (15 March 2010). "Major Difference between the Isoelectronic Fluoroborylene and Carbonyl Ligands: Triply Bridging Fluoroborylene Ligands in Fe3(BF)3(CO)9 Isoelectronic with Fe3(CO)12".Inorganic Chemistry.49 (6):2996–3001.doi:10.1021/ic902511m.PMID 20143841.
  12. ^Xu, Liancai; Li, Qian-shu; King, R. Bruce (May 2012). "Fluoroborylene ligands in binuclear ruthenium carbonyls: Comparison with their iron analogues".Polyhedron.38 (1):44–49.doi:10.1016/j.poly.2012.02.003.
  13. ^Drance et al. 2019: "Previously, Vidovic and Aldridge reported that two equivalents of the ruthenium-based nucleophileNa[CpRu(CO)2] (Cp, cyclopentadienyl;[C5H5]) reacts with boron trifluoride diethyl etherate (BF·
    3
    Et
    2
    O
    ) with the formal loss of two equivalents of sodium fluoride (NaF) to produce the bridgingBF complex (2-BF)[CpRu(CO)2]2) (20). The latter is the only crystallographically characterized compound in whichBF functions as a ligand to a metal center."
  14. ^abXu, L.; Li, Q.-S.; Xie, Y.; King, R. B.; Schaefer, H. F. III (2010). "Binuclear fluoroborylene manganese carbonyls".Inorganica Chimica Acta.363 (13):3538–3549.doi:10.1016/j.ica.2010.07.013.
  15. ^Vidovic, Dragoslav; Aldridge, Simon (4 May 2009). "Coordination and Activation of the BF Molecule".Angewandte Chemie.121 (20):3723–3726.Bibcode:2009AngCh.121.3723V.doi:10.1002/ange.200901022.PMID 19373822.
  16. ^Drance, M. J.; Sears, J. D.; Mrse, A. M.; Moore, C. E.; Rheingold, A. L.; Neidig, M. L.; Figueroa, J. S. (2019)."Terminal Coordination of Diatomic Boron Monofluoride to Iron".Science.363 (6432):1203–1205.Bibcode:2019Sci...363.1203D.doi:10.1126/science.aaw6102.PMID 30872521.S2CID 78094683.
  17. ^Xu, Bing; Li, Li; Pu, Zhen; Yu, Wenjie; Li, Wenjing; Wang, Xuefeng (18 February 2019). "Fluoroborylene Complexes FBMF 2 (M = Sc, Y, La, Ce): Matrix Infrared Spectra and Quantum Chemical Calculations".Inorganic Chemistry.58 (4):2363–2371.doi:10.1021/acs.inorgchem.8b02801.PMID 30645096.
Boron pnictogenides
Boron halides
Acids
Boranes
Boron oxides and sulfides
Carbides
Organoboron compounds
Salts and covalent derivatives of thefluoride ion
HF?HeF2
LiFBeF2BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
+N
+NO3
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2Ne
NaFMgF2AlF
AlF3
SiF4P2F4
PF3
PF5
+PO4
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KFCaF
CaF2
ScF3TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbFSrF
SrF2
YF3ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsFBaF2 LuF3HfF4TaF5WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrFRaF2 LrF3RfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaF3CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3SmF
SmF2
SmF3
EuF2
EuF3
GdF3TbF3
TbF4
DyF2
DyF3
DyF4
HoF3ErF3TmF2
TmF3
YbF2
YbF3
AcF3ThF2
ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
FmMdF3No
PF6,AsF6,SbF6 compounds
AlF2−5,AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6,GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Retrieved from "https://en.wikipedia.org/w/index.php?title=Boron_monofluoride&oldid=1307017754"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp