Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Boron arsenide

From Wikipedia, the free encyclopedia
Boron arsenide
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/AsB/c1-2
    Key: DBKNIEBLJMAJHX-UHFFFAOYSA-N
  • [B]#[As]
Properties
BAs
Molar mass85.733 g/mol[1]
AppearanceBrown cubic crystals[1]
Density5.22 g/cm3[1]
Melting point1,100 °C (2,010 °F; 1,370 K) decomposes[1]
Insoluble
Band gap1.82 eV
Thermal conductivity1300 W/(m·K) (300 K)
Structure[2]
Cubic (sphalerite),cF8, No. 216
F43m
a = 0.4777 nm
4
Related compounds
Otheranions
Boron nitride
Boron phosphide
Boron antimonide
Othercations
Aluminium arsenide
Gallium arsenide
Indium arsenide
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound
Boron subarsenide
Identifiers
3D model (JSmol)
  • InChI=1S/2AsH2.B12/c;;1-2-3(1)5(1)6(1)4(1,2)8(2)7(2,3)9(3,5)11(5,6)10(4,6,8)12(7,8,9)11/h2*1H2;
    Key: RGSVMMFVXFQAMT-UHFFFAOYSA-N
  • [B]1234[B]567[B]189[B]2%10%11[B]8%12%13[B]%10%14%15[B]%16%17%18[B]35([B]6%16%19[B]%12%14%17[B]79%13%19)[B]4%11%15%18.[As].[As]
Properties
B12As2
Molar mass279.58 g/mol
Density3.56 g/cm3[3]
Insoluble
Band gap3.47 eV
Structure[4]
Rhombohedral,hR42, No. 166
R3m
a = 0.6149 nm,b = 0.6149 nm,c = 1.1914 nm
α = 90°, β = 90°, γ = 120°
6
Related compounds
Otheranions
Boron suboxide
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
Chemical compound

Boron arsenide (orArsenic boride) is a chemical compound involvingboron andarsenic, usually with achemical formula BAs. Other boron arsenide compounds are known, such as the subarsenideB12As2. Chemical synthesis of cubic BAs is very challenging and its single crystal forms usually have defects.

Properties

[edit]

BAs is a cubic (sphalerite)semiconductor in theIII-V family with alattice constant of 0.4777 nm and anindirect band gap of 1.82 eV. Cubic BAs is reported to decompose to the subarsenide B12As2 at temperatures above 920 °C.[5] Boron arsenide has a melting point of 2076 °C. The thermal conductivity of BAs is exceptionally high, measured in single-crystal BAs to be around 1300 W/(m·K) at room temperature, making it the highest among all metals and semiconductors.[6]

The basic physical properties of cubic BAs have been experimentally measured:[7] Band gap (1.82 eV), optical refractive index (3.29 at wavelength 657 nm), elastic modulus (326 GPa), shear modulus, Poisson's ratio, thermal expansion coefficient (3.85×10−6/K), and heat capacity.

It can be alloyed withgallium arsenide to produce ternary and withindium gallium arsenide to form quaternary semiconductors.[8]

BAs has high electron and hole mobility, >1000 cm2/V/second, unlike silicon which has high electron mobility, but low hole mobility.[9]

In 2023, a study in journalNature reported that subjected to high pressure BAs decreases its thermal conductivity contrary to the typical increase seen in most materials.[10][11][12]

Boron subarsenide

[edit]

Boron arsenide also occurs as subarsenides, including theicosahedral borideB12As2. It belongs toR3mspace group with arhombohedral structure based on clusters of boron atoms and two-atom As–As chains. It is a wide-bandgap semiconductor (3.47 eV) with the extraordinary ability to "self-heal" radiation damage.[13] This form can be grown onsubstrates such assilicon carbide.[14] Another use forsolar cell fabrication[8][15] was proposed, but it is not currently used for this purpose.

Applications

[edit]

Boron arsenide is most attractive for use in electronics thermal management. Experimental integration withgallium nitride transistors to form GaN-BAs heterostructures has been demonstrated and shows better performance than the best GaNHEMT devices on silicon carbide or diamond substrates. Manufacturing BAs composites was developed as highly conducting and flexible thermal interfaces.[16]

First-principles calculations have predicted that thethermal conductivity of cubic BAs is remarkably high, over 2,200 W/(m·K) at room temperature, which is comparable to that of diamond and graphite.[17] Subsequent measurements yielded a value of only 190 W/(m·K) due to the high density of defects.[18][19] More recent first-principles calculations incorporating four-phonon scattering predict a thermal conductivity of 1400 W/(m·K).[20] Later, defect-free boron arsenide crystals have been experimentally realized and measured with an ultrahigh thermal conductivity of 1300 W/(m·K), consistent with theory predictions. Crystals with small density of defects have shown thermal conductivity of 900–1000 W/(m·K).[21][22]

The cubic-shaped boron arsenide has been discovered to be better at conducting heat and electricity thansilicon, as well as reportedly better than silicon at conducting both electrons and its positively charged counterpart, the "electron-hole."[23]

References

[edit]
  1. ^abcdHaynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press. p. 4.53.ISBN 1-4398-5511-0.
  2. ^Perri, J. A; La Placa, S; Post, B (1958)."New group III-group V compounds: BP and BAs".Acta Crystallographica.11 (4): 310.Bibcode:1958AcCry..11..310P.doi:10.1107/S0365110X58000827.
  3. ^Villars, Pierre (ed.)"B12As2 (B6As) Crystal Structure" inInorganic Solid Phases, Springer, Heidelberg (ed.)SpringerMaterials
  4. ^Morosin, B; Aselage, T. L; Feigelson, R. S (2011). "Crystal Structure Refinements of Rhombohedral Symmetry Materials Containing Boron-Rich Icosahedra".MRS Proceedings.97 145.doi:10.1557/PROC-97-145.
  5. ^Chu, T. L; Hyslop, A. E (1974). "Preparation and Properties of Boron Arsenide Films".Journal of the Electrochemical Society.121 (3): 412.Bibcode:1974JElS..121..412C.doi:10.1149/1.2401826.
  6. ^Kang, J.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. (2018)."Experimental observation of high thermal conductivity in boron arsenide".Science.361 (6402):575–578.Bibcode:2018Sci...361..575K.doi:10.1126/science.aat5522.PMID 29976798.
  7. ^Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2019). "Basic physical properties of cubic boron arsenide".Applied Physics Letters.115 (12): 122103.arXiv:1911.11281.Bibcode:2019ApPhL.115l2103K.doi:10.1063/1.5116025.
  8. ^abGeisz, J. F; Friedman, D. J; Olson, J. M;Kurtz, Sarah R; Reedy, R. C; Swartzlander, A. B; Keyes, B. M; Norman, A. G (2000). "BGaInAs alloys lattice matched to GaAs".Applied Physics Letters.76 (11): 1443.Bibcode:2000ApPhL..76.1443G.doi:10.1063/1.126058.
  9. ^Shin, Jungwoo; Gamage, Geethal Amila; Ding, Zhiwei; Chen, Ke; Tian, Fei; Qian, Xin; Zhou, Jiawei; Lee, Hwijong; Zhou, Jianshi; Shi, Li; Nguyen, Thanh (2022-07-22)."High ambipolar mobility in cubic boron arsenide".Science.377 (6604):437–440.Bibcode:2022Sci...377..437S.doi:10.1126/science.abn4290.ISSN 0036-8075.PMID 35862526.S2CID 250952849.
  10. ^"Surprising heat transfer behaviour seen in new semiconductor under pressure".Physics World. 2023-01-27. Retrieved2023-01-30.
  11. ^Li, Suixuan; Qin, Zihao; Wu, Huan; Li, Man; Kunz, Martin; Alatas, Ahmet; Kavner, Abby; Hu, Yongjie (23 November 2022)."Anomalous thermal transport under high pressure in boron arsenide".Nature.612 (7940):459–464.Bibcode:2022Natur.612..459L.doi:10.1038/s41586-022-05381-x.ISSN 1476-4687.OSTI 1999807.PMID 36418403.S2CID 253838186.
  12. ^Remmel, Ariana (2 January 2023)."Boron arsenide breaks the rules under pressure".C&EN. Vol. 101, no. 1. p. 6.doi:10.1021/cen-10101-scicon3. Retrieved2 April 2023.
  13. ^Carrard, M; Emin, D; Zuppiroli, L (1995). "Defect clustering and self-healing of electron-irradiated boron-rich solids".Physical Review B.51 (17):11270–11274.Bibcode:1995PhRvB..5111270C.doi:10.1103/PhysRevB.51.11270.PMID 9977852.
  14. ^Chen, H.; Wang, G.; Dudley, M.; Xu, Z.; Edgar, J. H.; Batten, T.; Kuball, M.; Zhang, L.; Zhu, Y. (2008). "Single-Crystalline B12As2 onm-plane (1100) 15R-SiC".Applied Physics Letters.92 (23): 231917.Bibcode:2008ApPhL..92w1917C.doi:10.1063/1.2945635.hdl:2097/2186.
  15. ^Boone, J. L. and Vandoren, T. P. (1980)Boron arsenide thin film solar cell development,Final Report, Eagle-Picher Industries, Inc., Miami, OK.abstract.
  16. ^Cui, Ying; Qin, Zihao; Wu, Huan; Li, Man; Hu, Yongjie (2021)."Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management".Nature Communications.12 (1): 1284.Bibcode:2021NatCo..12.1284C.doi:10.1038/s41467-021-21531-7.PMC 7904764.PMID 33627644..
  17. ^An unlikely competitor for diamond as the best thermal conductor, Phys.org news (July 8, 2013)
  18. ^Lv, Bing; Lan, Yucheng; Wang, Xiqu; Zhang, Qian; Hu, Yongjie; Jacobson, Allan J; Broido, David; Chen, Gang; Ren, Zhifeng; Chu, Ching-Wu (2015)."Experimental study of the proposed super-thermal-conductor: BAs"(PDF).Applied Physics Letters.106 (7): 074105.Bibcode:2015ApPhL.106g4105L.doi:10.1063/1.4913441.hdl:1721.1/117852.OSTI 1387754.S2CID 54074851.
  19. ^Zheng, Qiang; Polanco, Carlos A.; Du, Mao-Hua; Lindsay, Lucas R.;Chi, Miaofang; Yan, Jiaqiang; Sales, Brian C. (6 September 2018). "Antisite Pairs Suppress the Thermal Conductivity of BAs".Physical Review Letters.121 (10) 105901.arXiv:1804.02381.Bibcode:2018PhRvL.121j5901Z.doi:10.1103/PhysRevLett.121.105901.PMID 30240242.S2CID 206316624.
  20. ^Feng, Tianli; Lindsay, Lucas; Ruan, Xiulin (2017)."Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids".Physical Review B.96 (16) 161201.Bibcode:2017PhRvB..96p1201F.doi:10.1103/PhysRevB.96.161201.
  21. ^Li, Sheng; Zheng, Qiye; Lv, Yinchuan; Liu, Xiaoyuan; Wang, Xiqu; Huang, Pinshane Y.; Cahill, David G.; Lv, Bing (2018)."High thermal conductivity in cubic boron arsenide crystals".Science.361 (6402):579–581.Bibcode:2018Sci...361..579L.doi:10.1126/science.aat8982.PMID 29976796.
  22. ^Tian, Fei; Song, Bai; Chen, Xi; Ravichandran, Navaneetha K; Lv, Yinchuan; Chen, Ke; Sullivan, Sean; Kim, Jaehyun; Zhou, Yuanyuan; Liu, Te-Huan; Goni, Miguel; Ding, Zhiwei; Sun, Jingying; Gamage, Geethal Amila Gamage Udalamatta; Sun, Haoran; Ziyaee, Hamidreza; Huyan, Shuyuan; Deng, Liangzi; Zhou, Jianshi; Schmidt, Aaron J; Chen, Shuo; Chu, Ching-Wu; Huang, Pinshane Y; Broido, David; Shi, Li; Chen, Gang; Ren, Zhifeng (2018)."Unusual high thermal conductivity in boron arsenide bulk crystals".Science.361 (6402):582–585.Bibcode:2018Sci...361..582T.doi:10.1126/science.aat7932.PMID 29976797.
  23. ^General, Ryan (18 August 2022)."Chinese MIT professor helps discover 'game changer' months after espionage charges". NextShark. Retrieved19 August 2022.

External links

[edit]
Binary arsenides
AsH3
+H
He
LiAsBeBAsC+N+OFNe
Na3AsMgAlAs-SiPS+ClAr
KCaAsScTiVCrMnAsFeCoAsNiCuZn3As2GaAs-GeAsSe+BrKr
RbSrYAsZrNbMoAs2TcRuRhPdAs2AgCd3As2InAs-SnSb+Te+IXe
CsBa*LuHfTaAsWAs2ReOsIrPtAuHgTlPbBiAsPoAtRn
FrRa**LrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
*LaCePrAsNdPmSmAsEuGdTbDyAsHoAsErTmYb
**AcThPaUNpAs
NpAs2
PuAsAmCmBkCfEsFmMdNo
Ternary arsenides
Quaternary arsenides
Quinary arsenides
See also
Boron pnictogenides
Boron halides
Acids
Boranes
Boron oxides and sulfides
Carbides
Organoboron compounds
Retrieved from "https://en.wikipedia.org/w/index.php?title=Boron_arsenide&oldid=1320324889"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp