Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bispherical coordinates

From Wikipedia, the free encyclopedia
Three-dimensional orthogonal coordinate system
Illustration of bispherical coordinates, which are obtained by rotating a two-dimensionalbipolar coordinate system about the axis joining its two foci. The foci are located at distance 1 from the verticalz-axis. The red self-intersecting torus is the σ=45° isosurface, the blue sphere is the τ=0.5 isosurface, and the yellow half-plane is the φ=60° isosurface. The green half-plane marks thex-z plane, from which φ is measured. The black point is located at the intersection of the red, blue and yellow isosurfaces, at Cartesian coordinates roughly (0.841, −1.456, 1.239).

Bispherical coordinates are a three-dimensionalorthogonalcoordinate system that results from rotating the two-dimensionalbipolar coordinate system about the axis that connects the two foci. Thus, the twofociF1{\displaystyle F_{1}} andF2{\displaystyle F_{2}} inbipolar coordinates remain points (on thez{\displaystyle z}-axis, the axis of rotation) in the bispherical coordinate system.

Definition

[edit]

The most common definition of bispherical coordinates(τ,σ,ϕ){\displaystyle (\tau ,\sigma ,\phi )} is

x=a sinσcoshτcosσcosϕ,y=a sinσcoshτcosσsinϕ,z=a sinhτcoshτcosσ,{\displaystyle {\begin{aligned}x&=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\cos \phi ,\\y&=a\ {\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}\sin \phi ,\\z&=a\ {\frac {\sinh \tau }{\cosh \tau -\cos \sigma }},\end{aligned}}}

where theσ{\displaystyle \sigma } coordinate of a pointP{\displaystyle P} equals the angleF1PF2{\displaystyle F_{1}PF_{2}} and theτ{\displaystyle \tau } coordinate equals thenatural logarithm of the ratio of the distancesd1{\displaystyle d_{1}} andd2{\displaystyle d_{2}} to the foci

τ=lnd1d2{\displaystyle \tau =\ln {\frac {d_{1}}{d_{2}}}}

The coordinates ranges are −∞ <τ{\displaystyle \tau } < ∞, 0 ≤σ{\displaystyle \sigma }π{\displaystyle \pi } and 0 ≤ϕ{\displaystyle \phi } ≤ 2π{\displaystyle \pi }.

Coordinate surfaces

[edit]

Surfaces of constantσ{\displaystyle \sigma } correspond to intersecting tori of different radii

z2+(x2+y2acotσ)2=a2sin2σ{\displaystyle z^{2}+\left({\sqrt {x^{2}+y^{2}}}-a\cot \sigma \right)^{2}={\frac {a^{2}}{\sin ^{2}\sigma }}}

that all pass through the foci but are not concentric. The surfaces of constantτ{\displaystyle \tau } are non-intersecting spheres of different radii

(x2+y2)+(zacothτ)2=a2sinh2τ{\displaystyle \left(x^{2}+y^{2}\right)+\left(z-a\coth \tau \right)^{2}={\frac {a^{2}}{\sinh ^{2}\tau }}}

that surround the foci. The centers of the constant-τ{\displaystyle \tau } spheres lie along thez{\displaystyle z}-axis, whereas the constant-σ{\displaystyle \sigma } tori are centered in thexy{\displaystyle xy} plane.

Inverse formulae

[edit]

The formulae for the inverse transformation are:

σ=arccos(R2a2Q),τ=arsinh(2azQ),ϕ=arctan(yx),{\displaystyle {\begin{aligned}\sigma &=\arccos \left({\dfrac {R^{2}-a^{2}}{Q}}\right),\\\tau &=\operatorname {arsinh} \left({\dfrac {2az}{Q}}\right),\\\phi &=\arctan \left({\dfrac {y}{x}}\right),\end{aligned}}}

whereR=x2+y2+z2{\textstyle R={\sqrt {x^{2}+y^{2}+z^{2}}}} andQ=(R2+a2)2(2az)2.{\textstyle Q={\sqrt {\left(R^{2}+a^{2}\right)^{2}-\left(2az\right)^{2}}}.}

Scale factors

[edit]

The scale factors for the bispherical coordinatesσ{\displaystyle \sigma } andτ{\displaystyle \tau } are equal

hσ=hτ=acoshτcosσ{\displaystyle h_{\sigma }=h_{\tau }={\frac {a}{\cosh \tau -\cos \sigma }}}

whereas the azimuthal scale factor equals

hϕ=asinσcoshτcosσ{\displaystyle h_{\phi }={\frac {a\sin \sigma }{\cosh \tau -\cos \sigma }}}

Thus, the infinitesimal volume element equals

dV=a3sinσ(coshτcosσ)3dσdτdϕ{\displaystyle dV={\frac {a^{3}\sin \sigma }{\left(\cosh \tau -\cos \sigma \right)^{3}}}\,d\sigma \,d\tau \,d\phi }

and the Laplacian is given by

2Φ=(coshτcosσ)3a2sinσ[σ(sinσcoshτcosσΦσ)+sinστ(1coshτcosσΦτ)+1sinσ(coshτcosσ)2Φϕ2]{\displaystyle {\begin{aligned}\nabla ^{2}\Phi ={\frac {\left(\cosh \tau -\cos \sigma \right)^{3}}{a^{2}\sin \sigma }}&\left[{\frac {\partial }{\partial \sigma }}\left({\frac {\sin \sigma }{\cosh \tau -\cos \sigma }}{\frac {\partial \Phi }{\partial \sigma }}\right)\right.\\[8pt]&{}\quad +\left.\sin \sigma {\frac {\partial }{\partial \tau }}\left({\frac {1}{\cosh \tau -\cos \sigma }}{\frac {\partial \Phi }{\partial \tau }}\right)+{\frac {1}{\sin \sigma \left(\cosh \tau -\cos \sigma \right)}}{\frac {\partial ^{2}\Phi }{\partial \phi ^{2}}}\right]\end{aligned}}}

Other differential operators such asF{\displaystyle \nabla \cdot \mathbf {F} } and×F{\displaystyle \nabla \times \mathbf {F} } can be expressed in the coordinates(σ,τ){\displaystyle (\sigma ,\tau )} by substituting the scale factors into the general formulae found inorthogonal coordinates.

Applications

[edit]

The classic applications of bispherical coordinates are in solvingpartial differential equations, e.g.,Laplace's equation, for which bispherical coordinates allow aseparation of variables. However, theHelmholtz equation is not separable in bispherical coordinates. A typical example would be theelectric field surrounding two conducting spheres of different radii.

References

[edit]

Bibliography

[edit]
  • Morse PM, Feshbach H (1953).Methods of Theoretical Physics, Parts I and II. New York: McGraw-Hill. pp. 665–666,1298–1301.
  • Korn GA,Korn TM (1961).Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 182.LCCN 59014456.
  • Zwillinger D (1992).Handbook of Integration. Boston, MA: Jones and Bartlett. p. 113.ISBN 0-86720-293-9.
  • Moon PH, Spencer DE (1988). "Bispherical Coordinates (η, θ, ψ)".Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer Verlag. pp. 110–112 (Section IV, E4Rx).ISBN 0-387-02732-7.

External links

[edit]
Two dimensional
Three dimensional
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bispherical_coordinates&oldid=1316752262"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp