Theory had previously predicted a half-life of 4.6×1019 years. It had been suspected to be radioactive for a long time.[7] The decay produces a 3.14 MeValpha particle plusthallium-205.[4][5]
Bismuth-209 occurs in the neptunium series decay chain.
Due to its extremely long half-life,209Bi can be treated as non-radioactive for nearly all applications. It is much less radioactive than human flesh, so it poses no real radiation hazard. Though209Bi holds the half-life record for alpha decay, it does not have the longest known half-life of any nuclide; this distinction belongs totellurium-128 (128Te) with a half-life estimated at7.7×1024 years bydouble beta decay.[8][9][10]
The half-life of209Bi was confirmed in 2012 by an Italian team inGran Sasso who reported(2.01±0.08)×1019 years. They also reported an even longer partial half-life for alpha decay of209Bi to the first excited state of205Tl (at 204 keV), estimated at 1.66×1021 years.[11] Even though this value is shorter than the half-life of128Te, both alpha decays of209Bi hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ ≈5.5×10−43 eV and ΔΕ ≈1.3×10−44 eV in application of theuncertainty principle[12] (beta or double beta decay would produce energy lines only inneutrinoless transitions, which have never been observed).
Because all primordial bismuth is bismuth-209, bismuth-209 is used for all normal applications of bismuth, such as being used as a replacement forlead,[13][14] in cosmetics,[15][16] in paints,[17] and in several medicines such asPepto-Bismol.[6][18][19] Alloys containing bismuth-209 such asbismuth bronze have been used for thousands of years.[20]
210Po can be manufactured by bombarding209Bi withneutrons in a nuclear reactor[21] and around 100 grams of210Po are produced each year.[22][21]209Po and208Po can be made through the proton bombardment of209Bi in acyclotron.[23]Astatine can also be produced by bombarding209Bi with alpha particles.[24][25][26] Traces of209Bi have also been usedto creategold in nuclear reactors.[27][28]
Bismuth-209 is created in the final part of thes-process.[a]
In the red giantstars of theasymptotic giant branch, thes-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed, and the latter quickly decays.[43] All elements heavier than it are formed in ther-process, or rapid process, which occurs during the first fifteen minutes ofsupernovas.[44][43] Bismuth-209 is also created during the r-process.[43]
^Red horizontal lines with a circle in their right ends representneutron captures; blue arrows pointing up-left representbeta decays; green arrows pointing down-left representalpha decays; cyan/light-green arrows pointing down-right representelectron captures.
^abKean, Sam (2011).The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). New York/Boston: Back Bay Books. pp. 158–160.ISBN978-0-316-051637.
^Maile, Frank J.; Pfaff, Gerhard; Reynders, Peter (2005). "Effect pigments—past, present and future".Progress in Organic Coatings.54 (3): 150.doi:10.1016/j.porgcoat.2005.07.003.
^B. Gunter "Inorganic Colored Pigments" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
^Madisch A, Morgner A, Stolte M, Miehlke S (December 2008). "Investigational treatment options in microscopic colitis".Expert Opinion on Investigational Drugs.17 (12):1829–37.doi:10.1517/13543780802514500.PMID19012499.S2CID72294495.
^Larsen, R. H.; Wieland, B. W.; Zalutsky, M. R. J. (1996). "Evaluation of an Internal Cyclotron Target for the Production of211At via the209Bi (α,2n)211At reaction".Applied Radiation and Isotopes.47 (2):135–143.doi:10.1016/0969-8043(95)00285-5.PMID8852627.
^abMunzenberg; Hofmann, S.; Heßberger, F. P.; Reisdorf, W.; Schmidt, K. H.; Schneider, J. H. R.; Armbruster, P.; Sahm, C. C.; Thuma, B. (1981). "Identification of element 107 by α correlation chains".Z. Phys. A.300 (1):107–108.Bibcode:1981ZPhyA.300..107M.doi:10.1007/BF01412623.S2CID118312056.
^Hessberger, F. P.; Münzenberg, G.; Hofmann, S.; Agarwal, Y. K.; Poppensieker, K.; Reisdorf, W.; Schmidt, K.-H.; Schneider, J. R. H.; Schneider, W. F. W.; Schött, H. J.; Armbruster, P.; Thuma, B.; Sahm, C.-C.; Vermeulen, D. (1985). "The new isotopes258105,257105,254Lr and253Lr".Z. Phys. A.322 (4): 4.Bibcode:1985ZPhyA.322..557H.doi:10.1007/BF01415134.S2CID100784990.
^Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111".Zeitschrift für Physik A.350 (4):281–282.Bibcode:1995ZPhyA.350..281H.doi:10.1007/BF01291182.S2CID18804192.
^Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112".The European Physical Journal A.14 (2):147–157.Bibcode:2002EPJA...14..147H.doi:10.1140/epja/i2001-10119-x.S2CID8773326.
^Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN".Nuclear Physics A.734:101–108.Bibcode:2004NuPhA.734..101M.doi:10.1016/j.nuclphysa.2004.01.019.
^Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction209Bi(70Zn, n)278113".Journal of the Physical Society of Japan.73 (10):2593–2596.Bibcode:2004JPSJ...73.2593M.doi:10.1143/JPSJ.73.2593.
^K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope,278113, of the 113th Element".Journal of the Physical Society of Japan.81 (10) 103201.arXiv:1209.6431.Bibcode:2012JPSJ...81j3201M.doi:10.1143/JPSJ.81.103201.S2CID119217928.