Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bismuth-209

From Wikipedia, the free encyclopedia
Isotope of bismuth
Bismuth-209
General
Symbol209Bi
Namesbismuth-209
Protons(Z)83
Neutrons(N)126
Nuclide data
Natural abundance100%
Half-life(t1/2)2.01×1019 years[1]
Isotope mass208.980399[2]Da
Spin9/2−
Excess energy−18258.461±2.4keV
Nuclear binding energy7847.987±1.7 keV
Parent isotopes209Pb (β)
209Po (β+)
213At (α)
Decay products205Tl
Decay modes
Decay modeDecay energy (MeV)
Alpha emission3.1373
Isotopes of bismuth
Complete table of nuclides

Bismuth-209 (209Bi) is anisotope ofbismuth with the longest knownhalf-life of anynuclide that undergoes α-decay (alpha decay); the decay product isthallium-205. It has 83 protons and amagic number[3] of 126 neutrons,[3] andnaturally-occurring bismuth consists entirely of this isotope.

Decay properties

[edit]

Bismuth-209 was long thought to have the heaviest stable nucleus of any element, but in 2003, a research team at theInstitut d'astrophysique spatiale [fr] inOrsay, France, discovered that209Bi undergoesalpha decay with a half-life now given more precisely as2.01×1019 years (20.1 quintillion years),[4][5] over 109 times longer than the estimatedage of the universe.[6] The heaviest nucleus considered to be stable is nowlead-208 and the heaviest stablemonoisotopic element isgold (gold-197).

Theory had previously predicted a half-life of 4.6×1019 years. It had been suspected to be radioactive for a long time.[7] The decay produces a 3.14 MeValpha particle plusthallium-205.[4][5]

Bismuth-209 occurs in the neptunium series decay chain.

Due to its extremely long half-life,209Bi can be treated as non-radioactive for nearly all applications. It is much less radioactive than human flesh, so it poses no real radiation hazard. Though209Bi holds the half-life record for alpha decay, it does not have the longest known half-life of any nuclide; this distinction belongs totellurium-128 (128Te) with a half-life estimated at7.7×1024 years bydouble beta decay.[8][9][10]

The half-life of209Bi was confirmed in 2012 by an Italian team inGran Sasso who reported(2.01±0.08)×1019 years. They also reported an even longer partial half-life for alpha decay of209Bi to the first excited state of205Tl (at 204 keV), estimated at 1.66×1021 years.[11] Even though this value is shorter than the half-life of128Te, both alpha decays of209Bi hold the record of the thinnest natural line widths of any measurable physical excitation, estimated respectively at ΔΕ5.5×10−43 eV and ΔΕ1.3×10−44 eV in application of theuncertainty principle[12] (beta or double beta decay would produce energy lines only inneutrinoless transitions, which have never been observed).

Applications

[edit]

Because all primordial bismuth is bismuth-209, bismuth-209 is used for all normal applications of bismuth, such as being used as a replacement forlead,[13][14] in cosmetics,[15][16] in paints,[17] and in several medicines such asPepto-Bismol.[6][18][19] Alloys containing bismuth-209 such asbismuth bronze have been used for thousands of years.[20]

Synthesis of other elements

[edit]

210Po can be manufactured by bombarding209Bi withneutrons in a nuclear reactor[21] and around 100 grams of210Po are produced each year.[22][21]209Po and208Po can be made through the proton bombardment of209Bi in acyclotron.[23]Astatine can also be produced by bombarding209Bi with alpha particles.[24][25][26] Traces of209Bi have also been usedto creategold in nuclear reactors.[27][28]

209Bi has been used as a target for the creation of several isotopes ofsuperheavy elements such asdubnium,[29][30][31][32]bohrium,[29][33]meitnerium,[34][35][36]roentgenium,[37][38][39] andnihonium.[40][41][42]

Formation

[edit]

Primordial

[edit]
Bismuth-209 is created in the final part of thes-process.[a]

In the red giantstars of theasymptotic giant branch, thes-process (slow process) is ongoing to produce bismuth-209 and polonium-210 by neutron capture as the heaviest elements to be formed, and the latter quickly decays.[43] All elements heavier than it are formed in ther-process, or rapid process, which occurs during the first fifteen minutes ofsupernovas.[44][43] Bismuth-209 is also created during the r-process.[43]

Radiogenic

[edit]

Some209Bi was created radiogenically from theneptuniumdecay chain.[45]Neptunium-237 is anextinct radionuclide, but it can be found in traces inuranium ores because ofneutron capture reactions.[45] This is also ultimately due to ther-process, as every (4n+1) nucleus formed (and not fissioned) ultimately decayed to bismuth.

See also

[edit]

Notes

[edit]
  1. ^Red horizontal lines with a circle in their right ends representneutron captures; blue arrows pointing up-left representbeta decays; green arrows pointing down-left representalpha decays; cyan/light-green arrows pointing down-right representelectron captures.
Lighter:
bismuth-208
Bismuth-209 is an
isotope ofbismuth
Heavier:
bismuth-210
Decay product of:
astatine-213(α)
polonium-209(β+)
lead-209(β)
Decay chain
of bismuth-209
Decays to:
thallium-205(α)

References

[edit]
  1. ^Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021)."The NUBASE2020 evaluation of nuclear properties"(PDF).Chinese Physics C.45 (3) 030001.doi:10.1088/1674-1137/abddae.
  2. ^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*".Chinese Physics C.45 (3) 030003.doi:10.1088/1674-1137/abddaf.
  3. ^abBlank, B.; Regan, P.H. (2000)."Magic and doubly-magic nuclei".Nuclear Physics News.10 (4):20–27.doi:10.1080/10506890109411553.S2CID 121966707.
  4. ^abDumé, Belle (2003-04-23)."Bismuth breaks half-life record for alpha decay". Physicsweb.
  5. ^abMarcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth".Nature.422 (6934):876–878.Bibcode:2003Natur.422..876D.doi:10.1038/nature01541.PMID 12712201.S2CID 4415582.
  6. ^abKean, Sam (2011).The Disappearing Spoon (and other true tales of madness, love, and the history of the world from the Periodic Table of Elements). New York/Boston: Back Bay Books. pp. 158–160.ISBN 978-0-316-051637.
  7. ^Carvalho, H. G.; Penna, M. (1972). "Alpha-activity of209
    Bi
    ".Lettere al Nuovo Cimento.3 (18): 720.doi:10.1007/BF02824346.S2CID 120952231.
  8. ^"Noble Gas Research". Archived fromthe original on 2011-09-28. Retrieved2013-01-10. Tellurium-128 information and half-life. Accessed July 14, 2009.
  9. ^Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003)."The NUBASE Evaluation of Nuclear and Decay Properties".Nuclear Physics A.729 (1). Atomic Mass Data Center:3–128.Bibcode:2003NuPhA.729....3A.doi:10.1016/j.nuclphysa.2003.11.001.
  10. ^"WWW Table of Radioactive Isotopes: Tellurium". Nuclear Science Division, Lawrence Berkeley National Laboratory. 2008. Archived fromthe original on 2010-02-05. Retrieved2010-01-16.
  11. ^J.W. Beeman; et al. (2012). "First Measurement of the Partial Widths of209Bi Decay to the Ground and to the First Excited States".Physical Review Letters.108 (6) 062501.arXiv:1110.3138.Bibcode:2012PhRvL.108f2501B.doi:10.1103/PhysRevLett.108.062501.PMID 22401058.S2CID 118686992.
  12. ^"Particle lifetimes from the uncertainty principle".
  13. ^Hopper KD; King SH; Lobell ME; TenHave TR; Weaver JS (1997). "The breast: inplane x-ray protection during diagnostic thoracic CT—shielding with bismuth radioprotective garments".Radiology.205 (3):853–8.doi:10.1148/radiology.205.3.9393547.PMID 9393547.
  14. ^Lohse, Joachim; Zangl, Stéphanie; Groß, Rita; Gensch, Carl-Otto; Deubzer, Otmar (September 2007)."Adaptation to Scientific and Technical Progress of Annex II Directive 2000/53/EC"(PDF). European Commission. Retrieved11 September 2009.
  15. ^Maile, Frank J.; Pfaff, Gerhard; Reynders, Peter (2005). "Effect pigments—past, present and future".Progress in Organic Coatings.54 (3): 150.doi:10.1016/j.porgcoat.2005.07.003.
  16. ^Pfaff, Gerhard (2008).Special effect pigments: Technical basics and applications. Vincentz Network GmbH. p. 36.ISBN 978-3-86630-905-0.
  17. ^B. Gunter "Inorganic Colored Pigments" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2012.
  18. ^Madisch A, Morgner A, Stolte M, Miehlke S (December 2008). "Investigational treatment options in microscopic colitis".Expert Opinion on Investigational Drugs.17 (12):1829–37.doi:10.1517/13543780802514500.PMID 19012499.S2CID 72294495.
  19. ^Merck Index, 11th Edition,1299
  20. ^Gordon, Robert B.; Rutledge, John W. (1984). "Bismuth Bronze from Machu Picchu, Peru".Science.223 (4636). American Association for the Advancement of Science:585–586.Bibcode:1984Sci...223..585G.doi:10.1126/science.223.4636.585.JSTOR 1692247.PMID 17749940.S2CID 206572055.
  21. ^abRoessler, G. (2007)."Why210Po?"(PDF).Health Physics News. Vol. 35, no. 2.Health Physics Society.Archived(PDF) from the original on 2014-04-03. Retrieved2019-06-20.
  22. ^"Swiss study: Polonium found in Arafat's bones". Al Jazeera. Retrieved2013-11-07.
  23. ^Carvalho, F.; Fernandes, S.; Fesenko, S.; Holm, E.; Howard, B.; Martin, P.; Phaneuf, P.; Porcelli, D.; Pröhl, G.; Twining, J. (2017).The Environmental Behaviour of Polonium. Technical reports series. Vol. 484. Vienna: International Atomic Energy Agency. p. 22.ISBN 978-92-0-112116-5.ISSN 0074-1914.
  24. ^Barton, G. W.;Ghiorso, A.; Perlman, I. (1951)."Radioactivity of Astatine Isotopes".Physical Review.82 (1):13–19.Bibcode:1951PhRv...82...13B.doi:10.1103/PhysRev.82.13.hdl:2027/mdp.39015086480574.(subscription required)
  25. ^Larsen, R. H.; Wieland, B. W.; Zalutsky, M. R. J. (1996). "Evaluation of an Internal Cyclotron Target for the Production of211At via the209Bi (α,2n)211At reaction".Applied Radiation and Isotopes.47 (2):135–143.doi:10.1016/0969-8043(95)00285-5.PMID 8852627.
  26. ^Nefedov, V. D.; Norseev, Yu. V.; Toropova, M. A.; Khalkin, Vladimir A. (1968). "Astatine".Russian Chemical Reviews.37 (2):87–98.Bibcode:1968RuCRv..37...87N.doi:10.1070/RC1968v037n02ABEH001603.S2CID 250775410.(subscription required)
  27. ^Aleklett, K.; Morrissey, D.; Loveland, W.; McGaughey, P.; Seaborg, G. (1981). "Energy dependence of209Bi fragmentation in relativistic nuclear collisions".Physical Review C.23 (3): 1044.Bibcode:1981PhRvC..23.1044A.doi:10.1103/PhysRevC.23.1044.
  28. ^Matthews, Robert (2 December 2001)."The Philosopher's Stone".The Daily Telegraph. Retrieved22 September 2020.
  29. ^abMunzenberg; Hofmann, S.; Heßberger, F. P.; Reisdorf, W.; Schmidt, K. H.; Schneider, J. H. R.; Armbruster, P.; Sahm, C. C.; Thuma, B. (1981). "Identification of element 107 by α correlation chains".Z. Phys. A.300 (1):107–108.Bibcode:1981ZPhyA.300..107M.doi:10.1007/BF01412623.S2CID 118312056.
  30. ^Hessberger, F. P.; Münzenberg, G.; Hofmann, S.; Agarwal, Y. K.; Poppensieker, K.; Reisdorf, W.; Schmidt, K.-H.; Schneider, J. R. H.; Schneider, W. F. W.; Schött, H. J.; Armbruster, P.; Thuma, B.; Sahm, C.-C.; Vermeulen, D. (1985). "The new isotopes258105,257105,254Lr and253Lr".Z. Phys. A.322 (4): 4.Bibcode:1985ZPhyA.322..557H.doi:10.1007/BF01415134.S2CID 100784990.
  31. ^F. P. Hessberger; Hofmann, S.; Ackermann, D.; Ninov, V.; Leino, M.; Münzenberg, G.; Saro, S.; Lavrentev, A.; Popeko, A.G.; Yeremin, A.V.; Stodel, Ch. (2001)."Decay properties of neutron-deficient isotopes256,257Db,255Rf,252,253Lr".Eur. Phys. J. A.12 (1):57–67.Bibcode:2001EPJA...12...57H.doi:10.1007/s100500170039.S2CID 117896888. Archived fromthe original on 2002-05-10.
  32. ^Leppänen, A.-P. (2005).Alpha-decay and decay-tagging studies of heavy elements using the RITU separator(PDF) (Thesis). University of Jyväskylä. pp. 83–100.ISBN 978-951-39-3162-9.ISSN 0075-465X.
  33. ^Nelson, S.; Gregorich, K.; Dragojević, I.; Garcia, M.; Gates, J.; Sudowe, R.; Nitsche, H. (2008). "Lightest Isotope of Bh Produced via the Bi209(Cr52,n)Bh260 Reaction".Physical Review Letters.100 (2) 22501.Bibcode:2008PhRvL.100b2501N.doi:10.1103/PhysRevLett.100.022501.PMID 18232860.S2CID 1242390.
  34. ^Münzenberg, G.; et al. (1982). "Observation of one correlated α-decay in the reaction58Fe on209Bi→267109".Zeitschrift für Physik A.309 (1):89–90.Bibcode:1982ZPhyA.309...89M.doi:10.1007/BF01420157.S2CID 120062541.
  35. ^Münzenberg, G.; Hofmann, S.; Heßberger, F. P.; et al. (1988). "New results on element 109".Zeitschrift für Physik A.330 (4):435–436.Bibcode:1988ZPhyA.330..435M.doi:10.1007/BF01290131.S2CID 121364541.
  36. ^Hofmann, S.; Heßberger, F. P.; Ninov, V.; et al. (1997). "Excitation function for the production of265108 and266109".Zeitschrift für Physik A.358 (4):377–378.Bibcode:1997ZPhyA.358..377H.doi:10.1007/s002180050343.S2CID 124304673.
  37. ^Hofmann, S.; Ninov, V.; Heßberger, F. P.; Armbruster, P.; Folger, H.; Münzenberg, G.; Schött, H. J.; Popeko, A. G.; et al. (1995). "The new element 111".Zeitschrift für Physik A.350 (4):281–282.Bibcode:1995ZPhyA.350..281H.doi:10.1007/BF01291182.S2CID 18804192.
  38. ^Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; et al. (2002). "New results on elements 111 and 112".The European Physical Journal A.14 (2):147–157.Bibcode:2002EPJA...14..147H.doi:10.1140/epja/i2001-10119-x.S2CID 8773326.
  39. ^Morita, K.; Morimoto, K. K.; Kaji, D.; Goto, S.; Haba, H.; Ideguchi, E.; Kanungo, R.; Katori, K.; Koura, H.; Kudo, H.; Ohnishi, T.; Ozawa, A.; Peter, J. C.; Suda, T.; Sueki, K.; Tanihata, I.; Tokanai, F.; Xu, H.; Yeremin, A. V.; Yoneda, A.; Yoshida, A.; Zhao, Y.-L.; Zheng, T. (2004). "Status of heavy element research using GARIS at RIKEN".Nuclear Physics A.734:101–108.Bibcode:2004NuPhA.734..101M.doi:10.1016/j.nuclphysa.2004.01.019.
  40. ^Morita, Kosuke; Morimoto, Kouji; Kaji, Daiya; Akiyama, Takahiro; Goto, Sin-Ichi; Haba, Hiromitsu; Ideguchi, Eiji; Kanungo, Rituparna; et al. (2004). "Experiment on the Synthesis of Element 113 in the Reaction209Bi(70Zn, n)278113".Journal of the Physical Society of Japan.73 (10):2593–2596.Bibcode:2004JPSJ...73.2593M.doi:10.1143/JPSJ.73.2593.
  41. ^Barber, Robert C.; Karol, Paul J; Nakahara, Hiromichi; Vardaci, Emanuele; Vogt, Erich W. (2011)."Discovery of the elements with atomic numbers greater than or equal to 113 (IUPAC Technical Report)".Pure and Applied Chemistry.83 (7): 1485.doi:10.1351/PAC-REP-10-05-01.
  42. ^K. Morita; Morimoto, Kouji; Kaji, Daiya; Haba, Hiromitsu; Ozeki, Kazutaka; Kudou, Yuki; Sumita, Takayuki; Wakabayashi, Yasuo; Yoneda, Akira; Tanaka, Kengo; et al. (2012). "New Results in the Production and Decay of an Isotope,278113, of the 113th Element".Journal of the Physical Society of Japan.81 (10) 103201.arXiv:1209.6431.Bibcode:2012JPSJ...81j3201M.doi:10.1143/JPSJ.81.103201.S2CID 119217928.
  43. ^abcBurbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957)."Synthesis of the Elements in Stars".Reviews of Modern Physics.29 (4):547–650.Bibcode:1957RvMP...29..547B.doi:10.1103/RevModPhys.29.547.
  44. ^Chaisson, Eric, and Steve McMillan. Astronomy Today. 6th ed. San Francisco: Pearson Education, 2008.
  45. ^abPeppard, D. F.; Mason, G. W.; Gray, P. R.; Mech, J. F. (1952)."Occurrence of the (4n + 1) series in nature"(PDF).Journal of the American Chemical Society.74 (23):6081–6084.doi:10.1021/ja01143a074.
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bismuth-209&oldid=1313978052"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp