Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Biosynthesis

From Wikipedia, the free encyclopedia
Process where substrates are converted into more complex products in living organisms
This article has multiple issues. Please helpimprove it or discuss these issues on thetalk page.(Learn how and when to remove these messages)
icon
This articleneeds attention from an expert in biochemistry. The specific problem is:someone with a solid grasp of the full scope of this subject and of its secondary and advanced teaching literatures needs to address A, the clear structural issues of the article (e.g., general absence of catabolic biosynthetic pathways, insertion of macromolecule anabolic paths before all building blocks covered, etc.); B, discrepancies in scope vs. other major articles, cf.Nucleic acid metabolism; C, remaining gross factual errors (only those in the lead having yet been superficially addressed); etc..WikiProject Biochemistry may be able to help recruit an expert.(July 2024)
icon
This article'slead sectionmay need to be rewritten. The reason given is:to ensure, per WP:INTRO, that the lead properly summarises the article, and introduces no material that does not already appear validly and verifiably sourced to secondary sources within the article. Please review thelead guide and helpimprove the lead of this article if you can.(July 2024) (Learn how and when to remove this message)
This articlemay containcitations that do notverify the text. Please helpimprove it by checking for citation inaccuracies and resourcing or removing material failing verification.(July 2024) (Learn how and when to remove this message)
(Learn how and when to remove this message)

Biosynthesis, i.e.,chemical synthesis occurring in biological contexts, is a term most often referring to multi-step,enzyme-catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzymesubstrates, with conversion by the living organism either into simpler or more complexproducts. Examples of biosynthetic pathways include those for the production ofamino acids,lipid membrane components, andnucleotides, but also for the production of all classes of biologicalmacromolecules, and ofacetyl-coenzyme A,adenosine triphosphate,nicotinamide adenine dinucleotide and other key intermediate and transactional molecules needed formetabolism. Thus, in biosynthesis, any of an array ofcompounds, from simple to complex, are converted into other compounds, and so it includes both thecatabolism andanabolism (building up and breaking down) of complex molecules (includingmacromolecules). Biosynthetic processes are often represented via charts ofmetabolic pathways. A particular biosynthetic pathway may be located within a single cellularorganelle (e.g.,mitochondrial fatty acid synthesis pathways), while others involve enzymes that are located across an array of cellular organelles and structures (e.g., the biosynthesis of glycosylated cell surface proteins).

Elements of biosynthesis

[edit]
icon
This sectiondoes notcite anysources. Please helpimprove this section byadding citations to reliable sources. Unsourced material may be challenged andremoved.(July 2024) (Learn how and when to remove this message)

Elements of biosynthesis include:precursor compounds,chemical energy (e.g.ATP), and catalytic enzymes which may needcoenzymes (e.g.NADH,NADPH). These elements createmonomers, the building blocks for macromolecules. Some important biological macromolecules include:proteins, which are composed ofamino acid monomers joined viapeptide bonds, andDNA molecules, which are composed of nucleotides joined viaphosphodiester bonds.

Properties of chemical reactions

[edit]

Biosynthesis occurs due to a series of chemical reactions. For these reactions to take place, the following elements are necessary:[1]

In the simplest sense, the reactions that occur in biosynthesis have the following format:[2]

ReactantenzymeProduct{\displaystyle {\ce {Reactant ->[][enzyme] Product}}}

Some variations of this basic equation which will be discussed later in more detail are:[3]

  1. Simple compounds which are converted into other compounds, usually as part of a multiple step reaction pathway. Two examples of this type of reaction occur during the formation ofnucleic acids and thecharging oftRNA prior totranslation. For some of these steps, chemical energy is required:
    Precursor molecule+ATPproduct AMP+PPi{\displaystyle {\ce {{Precursor\ molecule}+ATP<=>{product\ AMP}+PP_{i}}}}
  2. Simple compounds that are converted into other compounds with the assistance of cofactors. For example, the synthesis ofphospholipids requires acetyl CoA, while the synthesis of another membrane component,sphingolipids, requires NADH and FADH for the formation thesphingosine backbone. The general equation for these examples is:
    Precursor molecule+Cofactorenzymemacromolecule{\displaystyle {\ce {{Precursor\ molecule}+{Cofactor}->[][enzyme]{macromolecule}}}}
  3. Simple compounds that join to create a macromolecule. For example,fatty acids join to form phospholipids. In turn, phospholipids andcholesterol interactnoncovalently in order to form thelipid bilayer. This reaction may be depicted as follows:
    Molecule 1+Molecule 2macromolecule{\displaystyle {\ce {{Molecule\ 1}+{Molecule\ 2}->{macromolecule}}}}

Lipid

[edit]
Lipid membrane bilayer

Many intricate macromolecules are synthesized in a pattern of simple, repeated structures.[4] For example, the simplest structures of lipids arefatty acids. Fatty acids arehydrocarbon derivatives; they contain acarboxyl group "head" and a hydrocarbon chain "tail".[4] These fatty acids create larger components, which in turn incorporate noncovalent interactions to form the lipid bilayer.[4]Fatty acid chains are found in two major components of membrane lipids:phospholipids andsphingolipids. A third major membrane component,cholesterol, does not contain these fatty acid units.[5]

Eukaryotic phospholipids

[edit]
See also:Phospholipid § Phospholipid synthesis

The foundation of allbiomembranes consists of abilayer structure of phospholipids.[6] The phospholipid molecule isamphipathic; it contains ahydrophilic polar head and ahydrophobic nonpolar tail.[4] The phospholipid heads interact with each other and aqueous media, while the hydrocarbon tails orient themselves in the center, away from water.[7] These latter interactions drive the bilayer structure that acts as a barrier for ions and molecules.[8]

There are various types of phospholipids; consequently, their synthesis pathways differ. However, the first step in phospholipid synthesis involves the formation ofphosphatidate ordiacylglycerol 3-phosphate at theendoplasmic reticulum andouter mitochondrial membrane.[7] The synthesis pathway is found below:

Phosphatidic acid synthesis
Phosphatidic acid synthesis

The pathway starts with glycerol 3-phosphate, which gets converted tolysophosphatidate via the addition of a fatty acid chain provided byacyl coenzyme A.[9] Then, lysophosphatidate is converted to phosphatidate via the addition of another fatty acid chain contributed by a second acyl CoA; all of these steps are catalyzed by the glycerol phosphateacyltransferase enzyme.[9] Phospholipid synthesis continues in the endoplasmic reticulum, and the biosynthesis pathway diverges depending on the components of the particular phospholipid.[9]

Sphingolipids

[edit]

Like phospholipids, these fatty acid derivatives have a polar head and nonpolar tails.[5] Unlike phospholipids, sphingolipids have asphingosine backbone.[10] Sphingolipids exist ineukaryotic cells and are particularly abundant in thecentral nervous system.[7] For example,sphingomyelin is part of themyelin sheath of nerve fibers.[11]

Sphingolipids are formed fromceramides that consist of a fatty acid chain attached to the amino group of a sphingosine backbone. These ceramides are synthesized from theacylation of sphingosine.[11] The biosynthetic pathway for sphingosine is found below:

Sphingosine synthesis
Sphingosine synthesis

As the image denotes, during sphingosine synthesis,palmitoyl CoA andserine undergo acondensation reaction which results in the formation of 3-dehydrosphinganine.[7] This product is then reduced to form dihydrospingosine, which is converted to sphingosine via theoxidation reaction byFAD.[7]

Cholesterol

[edit]

Thislipid belongs to a class of molecules calledsterols.[5] Sterols have four fused rings and ahydroxyl group.[5] Cholesterol is a particularly important molecule. Not only does it serve as a component of lipid membranes, it is also a precursor to severalsteroid hormones, includingcortisol,testosterone, andestrogen.[12]

Cholesterol is synthesized fromacetyl CoA.[12] The pathway is shown below:

Cholesterol synthesis pathway
Cholesterol synthesis pathway

More generally, this synthesis occurs in three stages, with the first stage taking place in thecytoplasm and the second and third stages occurring in the endoplasmic reticulum.[9] The stages are as follows:[12]

1. The synthesis ofisopentenyl pyrophosphate, the "building block" of cholesterol
2. The formation ofsqualene via the condensation of six molecules of isopentenyl phosphate
3. The conversion of squalene into cholesterol via several enzymatic reactions

Nucleotides

[edit]

The biosynthesis ofnucleotides involves enzyme-catalyzed reactions that convert substrates into more complex products.[1] Nucleotides are the building blocks ofDNA andRNA. Nucleotides are composed of a five-membered ring formed fromribose sugar in RNA, anddeoxyribose sugar in DNA; these sugars are linked to apurine orpyrimidine base with aglycosidic bond and aphosphate group at the5' location of the sugar.[13]

Purine nucleotides

[edit]
The synthesis of IMP.

The DNA nucleotidesadenosine andguanosine consist of a purine base attached to a ribose sugar with a glycosidic bond. In the case of RNA nucleotidesdeoxyadenosine anddeoxyguanosine, the purine bases are attached to a deoxyribose sugar with a glycosidic bond. The purine bases on DNA and RNA nucleotides are synthesized in a twelve-step reaction mechanism present in most single-celled organisms. Highereukaryotes employ a similarreaction mechanism in ten reaction steps. Purine bases are synthesized by convertingphosphoribosyl pyrophosphate (PRPP) toinosine monophosphate (IMP), which is the first key intermediate in purine base biosynthesis.[14] Further enzymatic modification ofIMP produces the adenosine and guanosine bases of nucleotides.

  1. The first step in purine biosynthesis is acondensation reaction, performed byglutamine-PRPP amidotransferase. This enzyme transfers theamino group fromglutamine to PRPP, forming5-phosphoribosylamine. The following step requires the activation ofglycine by the addition of aphosphate group fromATP.
  2. GAR synthetase[15] performs the condensation of activated glycine onto PRPP, formingglycineamide ribonucleotide (GAR).
  3. GAR transformylase adds aformyl group onto the amino group of GAR, forming formylglycinamide ribonucleotide (FGAR).
  4. FGAR amidotransferase[16] catalyzes the addition of a nitrogen group to FGAR, forming formylglycinamidine ribonucleotide (FGAM).
  5. FGAM cyclase catalyzes ring closure, which involves removal of a water molecule, forming the 5-memberedimidazole ring5-aminoimidazole ribonucleotide (AIR).
  6. N5-CAIR synthetase transfers acarboxyl group, forming the intermediate N5-carboxyaminoimidazole ribonucleotide (N5-CAIR).[17]
  7. N5-CAIR mutase rearranges the carboxyl functional group and transfers it onto the imidazole ring, formingcarboxyamino- imidazole ribonucleotide (CAIR). The two step mechanism of CAIR formation from AIR is mostly found in single celled organisms. Higher eukaryotes contain the enzyme AIR carboxylase,[18] which transfers a carboxyl group directly to AIR imidazole ring, forming CAIR.
  8. SAICAR synthetase forms apeptide bond betweenaspartate and the added carboxyl group of the imidazole ring, formingN-succinyl-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR).
  9. SAICAR lyase removes the carbon skeleton of the added aspartate, leaving the amino group and forming5-aminoimidazole-4-carboxamide ribonucleotide (AICAR).
  10. AICAR transformylase transfers a carbonyl group to AICAR, formingN-formylaminoimidazole- 4-carboxamide ribonucleotide (FAICAR).
  11. The final step involves the enzymeIMP synthase, which performs the purine ring closure and forms the inosine monophosphate intermediate.[5]

Pyrimidine nucleotides

[edit]
Uridine monophosphate (UMP) biosynthesis

Other DNA and RNA nucleotide bases that are linked to the ribose sugar via a glycosidic bond arethymine,cytosine anduracil (which is only found in RNA).Uridine monophosphate biosynthesis involves an enzyme that is located in themitochondrial inner membrane and multifunctional enzymes that are located in thecytosol.[19]

  1. The first step involves the enzymecarbamoyl phosphate synthase combiningglutamine withCO2 in an ATP dependent reaction to formcarbamoyl phosphate.
  2. Aspartate carbamoyltransferasecondenses carbamoyl phosphate with aspartate to form uridosuccinate.
  3. Dihydroorotase performsring closure, a reaction that loses water, to formdihydroorotate.
  4. Dihydroorotate dehydrogenase, located within the mitochondrial inner membrane,[19] oxidizes dihydroorotate toorotate.
  5. Orotate phosphoribosyl hydrolase (OMP pyrophosphorylase) condenses orotate withPRPP to formorotidine-5'-phosphate.
  6. OMP decarboxylase catalyzes the conversion of orotidine-5'-phosphate toUMP.[20]

After the uridine nucleotide base is synthesized, the other bases, cytosine and thymine are synthesized. Cytosine biosynthesis is a two-step reaction which involves the conversion of UMP toUTP.Phosphate addition to UMP is catalyzed by akinase enzyme. The enzymeCTP synthase catalyzes the next reaction step: the conversion of UTP toCTP by transferring anamino group from glutamine to uridine; this forms the cytosine base of CTP.[21] The mechanism, which depicts the reaction UTP + ATP + glutamine ⇔ CTP + ADP + glutamate, is below:

'Thymidylate synthase reaction: dUMP + 5,10-methylenetetrahydrofolate ⇔ dTMP + dihydrofolate
'Thymidylate synthase reaction: dUMP + 5,10-methylenetetrahydrofolate ⇔ dTMP + dihydrofolate
Ctp synthase mechanism: UTP + ATP + glutamine ⇔ CTP + ADP + glutamate
Ctp synthase mechanism: UTP + ATP + glutamine ⇔ CTP + ADP + glutamate

Cytosine is a nucleotide that is present in both DNA and RNA. However, uracil is only found in RNA. Therefore, after UTP is synthesized, it must be converted into adeoxy form to be incorporated into DNA. This conversion involves the enzymeribonucleoside triphosphate reductase. This reaction that removes the 2'-OH of the ribose sugar to generate deoxyribose is not affected by the bases attached to the sugar. This non-specificity allows ribonucleoside triphosphate reductase to convert allnucleotide triphosphates todeoxyribonucleotide by a similar mechanism.[21]

In contrast to uracil, thymine bases are found mostly in DNA, not RNA. Cells do not normally contain thymine bases that are linked to ribose sugars in RNA, thus indicating that cells only synthesize deoxyribose-linked thymine. The enzymethymidylate synthetase is responsible for synthesizing thymine residues fromdUMP todTMP. This reaction transfers amethyl group onto the uracil base of dUMP to generate dTMP.[21] The thymidylate synthase reaction, dUMP + 5,10-methylenetetrahydrofolate ⇔ dTMP + dihydrofolate, is shown to the right.

DNA

[edit]
As DNA polymerase moves in a 3' to 5' direction along the template strand, it synthesizes a new strand in the 5' to 3' direction

Although there are differences betweeneukaryotic andprokaryotic DNA synthesis, the following section denotes key characteristics of DNA replication shared by both organisms.

DNA is composed ofnucleotides that are joined byphosphodiester bonds.[4]DNA synthesis, which takes place in thenucleus, is asemiconservative process, which means that the resulting DNA molecule contains an original strand from the parent structure and a new strand.[22] DNA synthesis is catalyzed by a family ofDNA polymerases that require four deoxynucleoside triphosphates, atemplate strand, and aprimer with a free 3'OH in which to incorporate nucleotides.[23]

In order for DNA replication to occur, areplication fork is created by enzymes calledhelicases which unwind the DNA helix.[23]Topoisomerases at the replication fork removesupercoils caused by DNA unwinding, andsingle-stranded DNA binding proteins maintain the two single-stranded DNA templates stabilized prior to replication.[13]

DNA synthesis is initiated by theRNA polymeraseprimase, which makes an RNA primer with a free 3'OH.[23] This primer is attached to the single-stranded DNA template, and DNA polymerase elongates the chain by incorporating nucleotides; DNA polymerase also proofreads the newly synthesized DNA strand.[23]

During the polymerization reaction catalyzed by DNA polymerase, anucleophilic attack occurs by the 3'OH of the growing chain on the innermost phosphorus atom of a deoxynucleoside triphosphate; this yields the formation of aphosphodiester bridge that attaches a new nucleotide and releasespyrophosphate.[9]

Two types of strands are created simultaneously during replication: theleading strand, which is synthesized continuously and grows towards the replication fork, and thelagging strand, which is made discontinuously inOkazaki fragments and grows away from the replication fork.[22] Okazaki fragments arecovalently joined byDNA ligase to form a continuous strand.[22]Then, to complete DNA replication, RNA primers are removed, and the resulting gaps are replaced with DNA and joined via DNA ligase.[22]

Amino acids

[edit]
Main article:Amino acid synthesis

A protein is a polymer that is composed fromamino acids that are linked bypeptide bonds. There are more than300 amino acids found in nature of which only twenty two, known as theproteinogenic amino acids, are the building blocks for protein.[24] Onlygreen plants and mostmicrobes are able tosynthesize all of the 20 standard amino acids that are needed by all living species.Mammals can only synthesize ten of the twenty standard amino acids. The other amino acids,valine,methionine,leucine,isoleucine,phenylalanine,lysine,threonine andtryptophan for adults andhistidine, andarginine for babies are obtained through diet.[25]

Amino acid basic structure

[edit]
L-amino acid

The general structure of the standard amino acids includes aprimary amino group, acarboxyl group and thefunctional group attached to theα-carbon. The different amino acids are identified by the functional group. As a result of the three different groups attached to the α-carbon, amino acids areasymmetrical molecules. For all standard amino acids, exceptglycine, the α-carbon is achiral center. In the case of glycine, the α-carbon has two hydrogen atoms, thus adding symmetry to this molecule. With the exception ofproline, all of the amino acids found in life have theL-isoform conformation. Proline has a functional group on the α-carbon that forms a ring with the amino group.[24]

Glutamine oxoglutarate aminotransferase and glutamine synthetase
Glutamine oxoglutarate aminotransferase and glutamine synthetase

Nitrogen source

[edit]

One major step in amino acid biosynthesis involves incorporating a nitrogen group onto the α-carbon. In cells, there are two major pathways of incorporating nitrogen groups. One pathway involves the enzymeglutamine oxoglutarate aminotransferase (GOGAT) which removes theamide amino group ofglutamine and transfers it onto2-oxoglutarate, producing twoglutamate molecules. In this catalysis reaction, glutamine serves as the nitrogen source. An image illustrating this reaction is found to the right.

The other pathway for incorporating nitrogen onto the α-carbon of amino acids involves the enzymeglutamate dehydrogenase (GDH). GDH is able to transferammonia onto 2-oxoglutarate and form glutamate. Furthermore, the enzymeglutamine synthetase (GS) is able to transfer ammonia onto glutamate and synthesize glutamine, replenishing glutamine.[26]

The glutamate family of amino acids

[edit]

Theglutamate family of amino acids includes the amino acids that derive from the amino acid glutamate. This family includes: glutamate,glutamine,proline, andarginine. This family also includes the amino acidlysine, which is derived fromα-ketoglutarate.[27]

The biosynthesis of glutamate and glutamine is a key step in the nitrogen assimilation discussed above. The enzymesGOGAT andGDH catalyze thenitrogen assimilation reactions.

In bacteria, the enzymeglutamate 5-kinase initiates the biosynthesis of proline by transferring a phosphate group from ATP onto glutamate. The next reaction is catalyzed by the enzymepyrroline-5-carboxylate synthase (P5CS), which catalyzes the reduction of theϒ-carboxyl group of L-glutamate 5-phosphate. This results in the formation of glutamate semialdehyde, which spontaneously cyclizes to pyrroline-5-carboxylate. Pyrroline-5-carboxylate is further reduced by the enzyme pyrroline-5-carboxylate reductase (P5CR) to yield a proline amino acid.[28]

In the first step of arginine biosynthesis in bacteria, glutamate isacetylated by transferring the acetyl group from acetyl-CoA at the N-α position; this prevents spontaneous cyclization. The enzymeN-acetylglutamate synthase (glutamate N-acetyltransferase) is responsible for catalyzing the acetylation step. Subsequent steps are catalyzed by the enzymesN-acetylglutamate kinase,N-acetyl-gamma-glutamyl-phosphate reductase, andacetylornithine/succinyldiamino pimelate aminotransferase and yield the N-acetyl-L-ornithine. The acetyl group of acetylornithine is removed by the enzymeacetylornithinase (AO) orornithine acetyltransferase (OAT), and this yieldsornithine. Then, the enzymescitrulline andargininosuccinate convert ornithine to arginine.[29]

The diaminopimelic acid pathway

There are two distinct lysine biosynthetic pathways: the diaminopimelic acid pathway and theα-aminoadipate pathway. The most common of the two synthetic pathways is the diaminopimelic acid pathway; it consists of several enzymatic reactions that add carbon groups to aspartate to yield lysine:[30]

  1. Aspartate kinase initiates the diaminopimelic acid pathway by phosphorylating aspartate and producing aspartyl phosphate.
  2. Aspartate semialdehyde dehydrogenase catalyzes theNADPH-dependent reduction of aspartyl phosphate to yield aspartate semialdehyde.
  3. 4-hydroxy-tetrahydrodipicolinate synthase adds apyruvate group to the β-aspartyl-4-semialdehyde, and a water molecule is removed. This causescyclization and gives rise to (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate.
  4. 4-hydroxy-tetrahydrodipicolinate reductase catalyzes the reduction of (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate by NADPH to yield Δ'-piperideine-2,6-dicarboxylate (2,3,4,5-tetrahydrodipicolinate) and H2O.
  5. Tetrahydrodipicolinate acyltransferase catalyzes the acetylation reaction that results in ring opening and yields N-acetyl α-amino-ε-ketopimelate.
  6. N-succinyl-α-amino-ε-ketopimelate-glutamate aminotransaminase catalyzes the transamination reaction that removes the keto group of N-acetyl α-amino-ε-ketopimelate and replaces it with an amino group to yield N-succinyl-L-diaminopimelate.[31]
  7. N-acyldiaminopimelate deacylase catalyzes the deacylation of N-succinyl-L-diaminopimelate to yield L,L-diaminopimelate.[32]
  8. DAP epimerase catalyzes the conversion of L,L-diaminopimelate to themeso form of L,L-diaminopimelate.[33]
  9. DAP decarboxylase catalyzes the removal of the carboxyl group, yielding L-lysine.

The serine family of amino acids

[edit]

Theserine family of amino acid includes: serine,cysteine, andglycine. Most microorganisms and plants obtain the sulfur for synthesizingmethionine from the amino acid cysteine. Furthermore, the conversion of serine to glycine provides the carbons needed for the biosynthesis of the methionine andhistidine.[27]

During serine biosynthesis,[34] the enzymephosphoglycerate dehydrogenase catalyzes the initial reaction thatoxidizes3-phospho-D-glycerate to yield3-phosphonooxypyruvate.[35] The following reaction is catalyzed by the enzymephosphoserine aminotransferase, which transfers an amino group from glutamate onto 3-phosphonooxypyruvate to yieldL-phosphoserine.[36] The final step is catalyzed by the enzymephosphoserine phosphatase, whichdephosphorylates L-phosphoserine to yieldL-serine.[37]

There are two known pathways for the biosynthesis of glycine. Organisms that useethanol andacetate as the major carbon source utilize theglyconeogenic pathway to synthesizeglycine. The other pathway of glycine biosynthesis is known as theglycolytic pathway. This pathway converts serine synthesized from the intermediates ofglycolysis to glycine. In the glycolytic pathway, the enzymeserine hydroxymethyltransferase catalyzes the cleavage of serine to yield glycine and transfers the cleaved carbon group of serine ontotetrahydrofolate, forming5,10-methylene-tetrahydrofolate.[38]

Cysteine biosynthesis is a two-step reaction that involves the incorporation of inorganicsulfur. In microorganisms and plants, the enzymeserine acetyltransferase catalyzes the transfer of acetyl group fromacetyl-CoA onto L-serine to yieldO-acetyl-L-serine.[39] The following reaction step, catalyzed by the enzymeO-acetyl serine (thiol) lyase, replaces the acetyl group of O-acetyl-L-serine with sulfide to yield cysteine.[40]

The aspartate family of amino acids

[edit]

Theaspartate family of amino acids includes:threonine,lysine,methionine,isoleucine, and aspartate. Lysine and isoleucine are considered part of the aspartate family even though part of their carbon skeleton is derived frompyruvate. In the case of methionine, the methyl carbon is derived from serine and the sulfur group, but in most organisms, it is derived from cysteine.[27]

The biosynthesis of aspartate is a one step reaction that is catalyzed by a single enzyme. The enzymeaspartate aminotransferase catalyzes the transfer of an amino group from aspartate ontoα-ketoglutarate to yield glutamate andoxaloacetate.[41] Asparagine is synthesized by an ATP-dependent addition of an amino group onto aspartate;asparagine synthetase catalyzes the addition of nitrogen from glutamine or soluble ammonia to aspartate to yield asparagine.[42]

The diaminopimelic acid lysine biosynthetic pathway

The diaminopimelic acid biosynthetic pathway of lysine belongs to the aspartate family of amino acids. This pathway involves nine enzyme-catalyzed reactions that convert aspartate to lysine.[43]

  1. Aspartate kinase catalyzes the initial step in the diaminopimelic acid pathway by transferring aphosphoryl from ATP onto the carboxylate group of aspartate, which yields aspartyl-β-phosphate.[44]
  2. Aspartate-semialdehyde dehydrogenase catalyzes the reduction reaction bydephosphorylation of aspartyl-β-phosphate to yield aspartate-β-semialdehyde.[45]
  3. Dihydrodipicolinate synthase catalyzes thecondensation reaction of aspartate-β-semialdehyde with pyruvate to yield dihydrodipicolinic acid.[46]
  4. 4-hydroxy-tetrahydrodipicolinate reductase catalyzes the reduction of dihydrodipicolinic acid to yield tetrahydrodipicolinic acid.[47]
  5. Tetrahydrodipicolinate N-succinyltransferase catalyzes the transfer of a succinyl group from succinyl-CoA on to tetrahydrodipicolinic acid to yield N-succinyl-L-2,6-diaminoheptanedioate.[48]
  6. N-succinyldiaminopimelate aminotransferase catalyzes the transfer of an amino group from glutamate onto N-succinyl-L-2,6-diaminoheptanedioate to yield N-succinyl-L,L-diaminopimelic acid.[49]
  7. Succinyl-diaminopimelate desuccinylase catalyzes the removal of acyl group from N-succinyl-L,L-diaminopimelic acid to yield L,L-diaminopimelic acid.[50]
  8. Diaminopimelate epimerase catalyzes the inversion of the α-carbon of L,L-diaminopimelic acid to yieldmeso-diaminopimelic acid.[51]
  9. Siaminopimelate decarboxylase catalyzes the final step in lysine biosynthesis that removes the carbon dioxide group from meso-diaminopimelic acid to yield L-lysine.[52]

Proteins

[edit]
The tRNA anticodon interacts with the mRNA codon in order to bind an amino acid to growing polypeptide chain.
The process of tRNA charging

Protein synthesis occurs via a process calledtranslation.[53] During translation, genetic material calledmRNA is read byribosomes to generate a proteinpolypeptide chain.[53] This process requirestransfer RNA (tRNA) which serves as an adaptor by bindingamino acids on one end and interacting with mRNA at the other end; the latter pairing between the tRNA and mRNA ensures that the correct amino acid is added to the chain.[53] Protein synthesis occurs in three phases: initiation, elongation, and termination.[13] Prokaryotic (archaeal andbacterial) translation differs fromeukaryotic translation; however, this section will mostly focus on the commonalities between the two organisms.

Additional background

[edit]

Before translation can begin, the process of binding a specific amino acid to its corresponding tRNA must occur. This reaction, called tRNA charging, is catalyzed byaminoacyl tRNA synthetase.[54] A specific tRNA synthetase is responsible for recognizing and charging a particular amino acid.[54] Furthermore, this enzyme has special discriminator regions to ensure the correct binding between tRNA and its cognate amino acid.[54] The first step for joining an amino acid to its corresponding tRNA is the formation of aminoacyl-AMP:[54]

Amino acid+ATPaminoacylAMP+PPi{\displaystyle {\ce {{Amino\ acid}+ATP<=>{aminoacyl-AMP}+PP_{i}}}}

This is followed by the transfer of the aminoacyl group from aminoacyl-AMP to a tRNA molecule. The resulting molecule isaminoacyl-tRNA:[54]

AminoacylAMP+tRNAaminoacyltRNA+AMP{\displaystyle {\ce {{Aminoacyl-AMP}+ tRNA <=> {aminoacyl-tRNA}+ AMP}}}

The combination of these two steps, both of which are catalyzed by aminoacyl tRNA synthetase, produces a charged tRNA that is ready to add amino acids to the growing polypeptide chain.

In addition to binding an amino acid, tRNA has a three nucleotide unit called ananticodon thatbase pairs with specific nucleotide triplets on the mRNA calledcodons; codons encode a specific amino acid.[55] This interaction is possible thanks to the ribosome, which serves as the site for protein synthesis. The ribosome possesses three tRNA binding sites: the aminoacyl site (A site), the peptidyl site (P site), and the exit site (E site).[56]

There are numerous codons within an mRNA transcript, and it is very common for an amino acid to be specified by more than one codon; this phenomenon is calleddegeneracy.[57] In all, there are 64 codons, 61 of each code for one of the 20 amino acids, while the remaining codons specify chain termination.[57]

Translation in steps

[edit]

As previously mentioned, translation occurs in three phases: initiation, elongation, and termination.

Translation

Step 1: Initiation

[edit]

The completion of the initiation phase is dependent on the following three events:[13]

1.The recruitment of the ribosome to mRNA

2.The binding of a charged initiator tRNA into the P site of the ribosome

3.The proper alignment of the ribosome with mRNA's start codon

Step 2: Elongation

[edit]

Following initiation, the polypeptide chain is extended via anticodon:codon interactions, with the ribosome adding amino acids to the polypeptide chain one at a time. The following steps must occur to ensure the correct addition of amino acids:[58]

1.The binding of the correct tRNA into the A site of the ribosome

2.The formation of apeptide bond between the tRNA in the A site and the polypeptide chain attached to the tRNA in the P site

3.Translocation or advancement of the tRNA-mRNA complex by three nucleotides

Translocation "kicks off" the tRNA at the E site and shifts the tRNA from the A site into the P site, leaving the A site free for an incoming tRNA to add another amino acid.

Step 3: Termination

[edit]

The last stage of translation occurs when astop codon enters the A site.[1] Then, the following steps occur:

1. The recognition of codons byrelease factors, which causes thehydrolysis of the polypeptide chain from the tRNA located in the P site[1]

2.The release of the polypeptide chain[57]

3.The dissociation and "recycling" of the ribosome for future translation processes[57]

A summary table of the key players in translation is found below:

Key players in TranslationTranslation StagePurpose
tRNA synthetasebefore initiationResponsible for tRNA charging
mRNAinitiation, elongation, terminationTemplate for protein synthesis; contains regions named codons which encode amino acids
tRNAinitiation, elongation, terminationBinds ribosomes sites A, P, E; anticodon base pairs with mRNA codon to ensure that the correct amino acid is incorporated into the growing polypeptide chain
ribosomeinitiation, elongation, terminationDirects protein synthesis and catalyzes the formation of the peptide bond

Diseases associated with macromolecule deficiency

[edit]
Familial hypercholesterolemia causes cholesterol deposits

Errors in biosynthetic pathways can have deleterious consequences including the malformation of macromolecules or the underproduction of functional molecules. Below are examples that illustrate the disruptions that occur due to these inefficiencies.

See also

[edit]

References

[edit]
  1. ^abcdAlberts, Bruce (2008).Molecular Biology of the Cell (5th ed.). New York: Garland Science.ISBN 978-0-8153-4105-5.
  2. ^Zumdahl, Steven S. Zumdahl, Susan A. (2008).Chemistry (8th ed.). CA: Cengage Learning.ISBN 978-0-547-12532-9.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. ^Voet, Donald; Voet, Judith G.; Pratt, Charlotte W. (2013).Fundamentals of Biochemistry: Life at the Molecular Level (4th ed.). Hoboken, NJ: Wiley.ISBN 978-0-470-54784-7.
  4. ^abcdeLodish, Harvey; et al. (2007).Molecular cell biology (6th ed.). New York: W.H. Freeman.ISBN 978-0-7167-4366-8.
  5. ^abcdeCox, David L. Nelson, Michael M. (2008).Lehninger principles of biochemistry (5th ed.). New York: W.H. Freeman.ISBN 978-0-7167-7108-1.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. ^Hanin, Israel (2013).Phospholipids: Biochemical, Pharmaceutical, and Analytical Considerations. Springer.ISBN 978-1-4757-1366-4.
  7. ^abcdeVance, Dennis E.; Vance, Jean E. (2008).Biochemistry of lipids, lipoproteins and membranes (5th ed.). Amsterdam: Elsevier.ISBN 978-0-444-53219-0.
  8. ^Katsaras, J.; et al. (2001).Lipid bilayers: structure and interactions; with 6 tables. Berlin [u.a.]: Springer.ISBN 978-3-540-67555-6.
  9. ^abcdeStryer, Jeremy M. Berg; John L. Tymoczko; Lubert (2007).Biochemistry (6. ed., 3. print. ed.). New York: Freeman.ISBN 978-0-7167-8724-2.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. ^Gault, CR; LM Obeid; YA Hannun (2010). "An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown".Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology. Vol. 688. pp. 1–23.doi:10.1007/978-1-4419-6741-1_1.ISBN 978-1-4419-6740-4.PMC 3069696.PMID 20919643.
  11. ^abSiegel, George J. (1999).Basic neurochemistry: molecular, cellular and medical aspects (6. ed.). Philadelphia, Pa. [u.a.]: Lippincott Williams & Wilkins.ISBN 978-0-397-51820-3.
  12. ^abcHarris, J. Robin (2010).Cholesterol binding and cholesterol transport proteins: structure and function in health and disease. Dordrecht: Springer.ISBN 978-90-481-8621-1.
  13. ^abcdWatson, James D.; et al. (2007).Molecular biology of the gene (6th ed.). San Francisco, Calif.: Benjamin Cummings.ISBN 978-0-8053-9592-1.
  14. ^Kappock, TJ; Ealick, SE; Stubbe, J (October 2000). "Modular evolution of the purine biosynthetic pathway".Current Opinion in Chemical Biology.4 (5):567–72.doi:10.1016/s1367-5931(00)00133-2.PMID 11006546.
  15. ^Sampei, G; Baba, S; Kanagawa, M; Yanai, H; Ishii, T; Kawai, H; Fukai, Y; Ebihara, A; Nakagawa, N; Kawai, G (October 2010)."Crystal structures of glycinamide ribonucleotide synthetase, PurD, from thermophilic eubacteria".Journal of Biochemistry.148 (4):429–38.doi:10.1093/jb/mvq088.PMID 20716513.
  16. ^Hoskins, AA; Anand, R; Ealick, SE; Stubbe, J (Aug 17, 2004). "The formylglycinamide ribonucleotide amidotransferase complex from Bacillus subtilis: metabolite-mediated complex formation".Biochemistry.43 (32):10314–27.doi:10.1021/bi049127h.PMID 15301530.
  17. ^Mueller, EJ; Meyer, E; Rudolph, J; Davisson, VJ; Stubbe, J (Mar 1, 1994). "N5-carboxyaminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli".Biochemistry.33 (8):2269–78.doi:10.1021/bi00174a038.PMID 8117684.
  18. ^Firestine, SM; Poon, SW; Mueller, EJ; Stubbe, J; Davisson, VJ (Oct 4, 1994). "Reactions catalyzed by 5-aminoimidazole ribonucleotide carboxylases from Escherichia coli and Gallus gallus: a case for divergent catalytic mechanisms".Biochemistry.33 (39):11927–34.doi:10.1021/bi00205a031.PMID 7918411.
  19. ^abSrere, PA (1987). "Complexes of sequential metabolic enzymes".Annual Review of Biochemistry.56 (1):89–124.doi:10.1146/annurev.bi.56.070187.000513.PMID 2441660.
  20. ^Broach, edited by Jeffrey N. Strathern, Elizabeth W. Jones, James R. (1981).The Molecular biology of the yeast Saccharomyces. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.ISBN 978-0-87969-139-4.{{cite book}}:|first= has generic name (help)CS1 maint: multiple names: authors list (link)
  21. ^abcO'Donovan, GA; Neuhard, J (September 1970)."Pyrimidine metabolism in microorganisms".Bacteriological Reviews.34 (3):278–343.doi:10.1128/MMBR.34.3.278-343.1970.PMC 378357.PMID 4919542.
  22. ^abcdGeer, Gerald Karp; responsible for the revision of chapter 15 Peter van der (2004).Cell and molecular biology: concepts and experiments (4th ed., Wiley International ed.). New York: J. Wiley & Sons.ISBN 978-0-471-65665-4.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  23. ^abcdGriffiths, Anthony J. F. (1999).Modern genetic analysis (2. print. ed.). New York: Freeman.ISBN 978-0-7167-3118-4.
  24. ^abWu, G (May 2009). "Amino acids: metabolism, functions, and nutrition".Amino Acids.37 (1):1–17.doi:10.1007/s00726-009-0269-0.PMID 19301095.S2CID 1870305.
  25. ^Mousdale, D. M.; Coggins, J. R. (1991). "Amino Acid Synthesis".Target Sites for Herbicide Action. pp. 29–56.doi:10.1007/978-1-4899-2433-9_2.ISBN 978-1-4899-2435-3.
  26. ^Miflin, B. J.; Lea, P. J. (1977). "Amino Acid Metabolism".Annual Review of Plant Physiology.28:299–329.doi:10.1146/annurev.pp.28.060177.001503.
  27. ^abcUmbarger, HE (1978). "Amino acid biosynthesis and its regulation".Annual Review of Biochemistry.47 (1):532–606.doi:10.1146/annurev.bi.47.070178.002533.PMID 354503.
  28. ^Pérez-Arellano, I; Carmona-Alvarez, F; Martínez, AI; Rodríguez-Díaz, J; Cervera, J (March 2010)."Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease".Protein Science.19 (3):372–82.doi:10.1002/pro.340.PMC 2866264.PMID 20091669.
  29. ^Xu, Y; Labedan, B; Glansdorff, N (March 2007)."Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms".Microbiology and Molecular Biology Reviews.71 (1):36–47.doi:10.1128/MMBR.00032-06.PMC 1847373.PMID 17347518.
  30. ^"MetaCyc: L-lysine biosynthesis I".
  31. ^PETERKOFSKY, B; GILVARG, C (May 1961)."N-Succinyl-L-diaminopimelic-glutamic transaminase".The Journal of Biological Chemistry.236 (5):1432–8.doi:10.1016/S0021-9258(18)64192-4.PMID 13734750.
  32. ^KINDLER, SH; GILVARG, C (December 1960)."N-Succinyl-L-2,6-diaminopimelic acid deacylase".The Journal of Biological Chemistry.235:3532–5.doi:10.1016/S0021-9258(18)64502-8.PMID 13756049.
  33. ^Born, TL; Blanchard, JS (October 1999). "Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis".Current Opinion in Chemical Biology.3 (5):607–13.doi:10.1016/s1367-5931(99)00016-2.PMID 10508663.
  34. ^"Escherichia coli K-12 substr. MG1655".serine biosynthesis. SRI International. Retrieved12 December 2013.
  35. ^Bell, JK; Grant, GA; Banaszak, LJ (Mar 30, 2004). "Multiconformational states in phosphoglycerate dehydrogenase".Biochemistry.43 (12):3450–8.doi:10.1021/bi035462e.PMID 15035616.
  36. ^Dubnovitsky, AP; Kapetaniou, EG; Papageorgiou, AC (January 2005)."Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus".Protein Science.14 (1):97–110.doi:10.1110/ps.041029805.PMC 2253317.PMID 15608117.
  37. ^Wang, W; Kim, R; Jancarik, J; Yokota, H; Kim, SH (Jan 10, 2001)."Crystal structure of phosphoserine phosphatase from Methanococcus jannaschii, a hyperthermophile, at 1.8 A resolution".Structure.9 (1):65–71.doi:10.1016/s0969-2126(00)00558-x.PMID 11342136.
  38. ^Monschau, N; Stahmann, KP; Sahm, H; McNeil, JB; Bognar, AL (May 1, 1997)."Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis".FEMS Microbiology Letters.150 (1):55–60.doi:10.1111/j.1574-6968.1997.tb10349.x.PMID 9163906.
  39. ^Pye, VE; Tingey, AP; Robson, RL; Moody, PC (Sep 24, 2004)."The structure and mechanism of serine acetyltransferase from Escherichia coli".The Journal of Biological Chemistry.279 (39):40729–36.doi:10.1074/jbc.M403751200.PMID 15231846.
  40. ^Huang, B; Vetting, MW; Roderick, SL (May 2005)."The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase".Journal of Bacteriology.187 (9):3201–5.doi:10.1128/JB.187.9.3201-3205.2005.PMC 1082839.PMID 15838047.
  41. ^McPhalen, CA; Vincent, MG; Picot, D;Jansonius, JN; Lesk, AM; Chothia, C (Sep 5, 1992). "Domain closure in mitochondrial aspartate aminotransferase".Journal of Molecular Biology.227 (1):197–213.doi:10.1016/0022-2836(92)90691-C.PMID 1522585.
  42. ^Larsen, TM; Boehlein, SK; Schuster, SM; Richards, NG; Thoden, JB; Holden, HM; Rayment, I (Dec 7, 1999). "Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product".Biochemistry.38 (49):16146–57.CiteSeerX 10.1.1.453.5998.doi:10.1021/bi9915768.PMID 10587437.
  43. ^Velasco, AM; Leguina, JI; Lazcano, A (October 2002). "Molecular evolution of the lysine biosynthetic pathways".Journal of Molecular Evolution.55 (4):445–59.Bibcode:2002JMolE..55..445V.doi:10.1007/s00239-002-2340-2.PMID 12355264.S2CID 19460256.
  44. ^Kotaka, M; Ren, J; Lockyer, M; Hawkins, AR; Stammers, DK (Oct 20, 2006)."Structures of R- and T-state Escherichia coli aspartokinase III. Mechanisms of the allosteric transition and inhibition by lysine".The Journal of Biological Chemistry.281 (42):31544–52.doi:10.1074/jbc.M605886200.PMID 16905770.
  45. ^Hadfield, A; Kryger, G; Ouyang, J; Petsko, GA; Ringe, D; Viola, R (Jun 18, 1999). "Structure of aspartate-beta-semialdehyde dehydrogenase from Escherichia coli, a key enzyme in the aspartate family of amino acid biosynthesis".Journal of Molecular Biology.289 (4):991–1002.doi:10.1006/jmbi.1999.2828.PMID 10369777.
  46. ^Mirwaldt, C; Korndörfer, I; Huber, R (Feb 10, 1995). "The crystal structure of dihydrodipicolinate synthase from Escherichia coli at 2.5 A resolution".Journal of Molecular Biology.246 (1):227–39.doi:10.1006/jmbi.1994.0078.PMID 7853400.
  47. ^Cirilli, M; Zheng, R; Scapin, G; Blanchard, JS (Sep 16, 2003). "The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity".Biochemistry.42 (36):10644–50.doi:10.1021/bi030044v.PMID 12962488.
  48. ^Beaman, TW; Binder, DA; Blanchard, JS; Roderick, SL (Jan 21, 1997). "Three-dimensional structure of tetrahydrodipicolinate N-succinyltransferase".Biochemistry.36 (3):489–94.doi:10.1021/bi962522q.PMID 9012664.
  49. ^Weyand, S; Kefala, G; Weiss, MS (Mar 30, 2007). "The three-dimensional structure of N-succinyldiaminopimelate aminotransferase from Mycobacterium tuberculosis".Journal of Molecular Biology.367 (3):825–38.doi:10.1016/j.jmb.2007.01.023.PMID 17292400.
  50. ^Nocek, BP; Gillner, DM; Fan, Y; Holz, RC; Joachimiak, A (Apr 2, 2010)."Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase".Journal of Molecular Biology.397 (3):617–26.doi:10.1016/j.jmb.2010.01.062.PMC 2885003.PMID 20138056.
  51. ^Pillai, B; Cherney, M; Diaper, CM; Sutherland, A; Blanchard, JS; Vederas, JC; James, MN (Nov 23, 2007). "Dynamics of catalysis revealed from the crystal structures of mutants of diaminopimelate epimerase".Biochemical and Biophysical Research Communications.363 (3):547–53.Bibcode:2007BBRC..363..547P.doi:10.1016/j.bbrc.2007.09.012.PMID 17889830.
  52. ^Gokulan, K; Rupp, B; Pavelka MS, Jr; Jacobs WR, Jr; Sacchettini, JC (May 16, 2003)."Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis".The Journal of Biological Chemistry.278 (20):18588–96.doi:10.1074/jbc.M301549200.PMID 12637582.
  53. ^abcWeaver, Robert F. (2005).Molecular biology (3rd ed.). Boston: McGraw-Hill Higher Education.ISBN 978-0-07-284611-9.
  54. ^abcdeCooper, Geoffrey M. (2000).The Cell: A Molecular Approach (2nd ed.). Washington (DC): ASM Press.ISBN 978-0-87893-106-4.
  55. ^Jackson, R.J.; et al. (February 2010)."The mechanism of eukaryotic translation initiation and principles of its regulation".Molecular Cell Biology.10 (2):113–127.doi:10.1038/nrm2838.PMC 4461372.PMID 20094052.
  56. ^Green, Rachel; Harry F. Noller; et al. (1997). "Ribosomes and Translation".Annu. Rev. Biochem.66:679–716.doi:10.1146/annurev.biochem.66.1.679.PMID 9242921.
  57. ^abcdWeissbach, Herbert; Pestka, Sidney (1977).Molecular Mechanisms of Protein Biosynthesis. New York: Academic Press.ISBN 978-0-12-744250-1.
  58. ^Frank, J; Haixiao Gao; et al. (September 2007)."The process of mRNA–tRNA translocation".PNAS.104 (50):19671–19678.doi:10.1073/pnas.0708517104.PMC 2148355.PMID 18003906.
  59. ^abcBandeali, Salman J.; Daye, Jad; Virani, Salim S. (30 November 2013). "Novel Therapies for Treating Familial Hypercholesterolemia".Current Atherosclerosis Reports.16 (1): 382.doi:10.1007/s11883-013-0382-0.PMID 24293346.S2CID 8903481.
  60. ^abcKang, Tae Hyuk; Park, Yongjin; Bader, Joel S.; Friedmann, Theodore; Cooney, Austin John (9 October 2013)."The Housekeeping Gene Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) Regulates Multiple Developmental and Metabolic Pathways of Murine Embryonic Stem Cell Neuronal Differentiation".PLOS ONE.8 (10) e74967.Bibcode:2013PLoSO...874967K.doi:10.1371/journal.pone.0074967.PMC 3794013.PMID 24130677.
  61. ^abcWalport, Ken Murphy, Paul Travers, Mark (2011).Janeway's Immunobiology (8. ed.). Oxford: Taylor & Francis.ISBN 978-0-8153-4243-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  62. ^abHughes, edited by Donald C. Lo, Robert E. (2010).Neurobiology of Huntington's disease: applications to drug discovery (2nd ed.). Boca Raton: CRC Press/Taylor & Francis Group.ISBN 978-0-8493-9000-5.{{cite book}}:|first= has generic name (help)CS1 maint: multiple names: authors list (link)
  63. ^Biglan, Kevin M.; Ross, Christopher A.; Langbehn, Douglas R.; Aylward, Elizabeth H.; Stout, Julie C.; Queller, Sarah; Carlozzi, Noelle E.; Duff, Kevin; Beglinger, Leigh J.; Paulsen, Jane S. (26 June 2009)."Motor abnormalities in premanifest persons with Huntington's disease: The PREDICT-HD study".Movement Disorders.24 (12):1763–1772.doi:10.1002/mds.22601.PMC 3048804.PMID 19562761.
Types
Branches ofchemistry
Analytical
Theoretical
Physical
Inorganic
Organic
Biological
Interdisciplinarity
See also
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Biosynthesis&oldid=1320132308"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp