Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bioerosion

From Wikipedia, the free encyclopedia
Erosion of hard substrates by living organisms
Sponge borings (Entobia) and encrusters on a modern bivalve shell, North Carolina.
IUPAC definition

This definition describes the chemical process of bioerosion, specifically as it applies to biorelated polymers and applications, rather than the geological concept, as covered in the article text.Surfacedegradation resulting from the action of cells.

Note 1:Erosion is a general characteristic ofbiodegradation by cells that adhere to a surface and the molar mass of the bulk does not change, basically.

Note 2: Chemical degradation can present the characteristics of cell-mediatederosion when the rate of chemicalchain scission is greater than the rate of penetration of the cleaving chemical reagent, like diffusion of water in the case
of hydrolyticallydegradable polymer, for instance.

Note 3: Erosion with constancy of the bulk molar mass is also observed in the case of in vitroabiotic enzymatic degradation.

Note 4: In some cases, bioerosion results from a combination of cell-mediated and chemical degradation, actually.[1]

Bioerosion describes the breakdown of hardocean substrates – and less oftenterrestrial substrates – by living organisms. Marine bioerosion can be caused bymollusks,polychaete worms,phoronids,sponges,crustaceans,echinoids, andfish; it can occur oncoastlines, oncoral reefs, and onships; its mechanisms include biotic boring, drilling, rasping, and scraping. On dry land, bioerosion is typically performed bypioneer plants or plant-like organisms such aslichen, and mostly chemical (e.g. byacidic secretions onlimestone) or mechanical (e.g. byroots growing into cracks) in nature.[citation needed]

Bioerosion of coral reefs generates the fine and whitecoral sand characteristic of tropical islands. The coral is converted to sand by internal bioeroders such asalgae,fungi,bacteria (microborers) andsponges (Clionaidae),bivalves (includingLithophaga),sipunculans, polychaetes,acrothoracican barnacles andphoronids, generating extremely fine sediment with diameters of 10 to 100 micrometres. External bioeroders includesea urchins (such asDiadema) andchitons. These forces in concert produce a great deal of erosion.Sea urchin erosion ofcalcium carbonate has been reported in some reefs at annual rates exceeding 20 kg/m2.[citation needed]

Fish also erode coral while eatingalgae.Parrotfish cause a great deal of bioerosion using well developed jaw muscles, tooth armature, and a pharyngeal mill, to grind ingested material into sand-sized particles. In one study, bioerosion ofcoral reefaragonite by an individual parrotfish was estimated to occur at a rate of 1017.7±186.3 kg/yr (0.41±0.07 m3/yr) forChlorurus gibbus and 23.6±3.4 kg/yr (9.7*10−3±1.3*10−3 m3/yr) forChlorurus sordidus.[2]

Bioerosion is also well known in thefossil record on shells andhardgrounds,[3][4] with traces of this activity stretching back well into thePrecambrian.[5] Macrobioerosion, which produces borings visible to the naked eye, shows two distinctevolutionary radiations. One was in the MiddleOrdovician (the Ordovician Bioerosion Revolution[6]) and the other in theJurassic.[5][7][8] Microbioerosion also has a long fossil record and its own radiations.[9][10]

Gallery

[edit]

See also

[edit]

References

[edit]
  1. ^abVert, Michel; Doi, Yoshiharu; Hellwich, Karl-Heinz; Hess, Michael; Hodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schué, François (2012)."Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)"(PDF).Pure and Applied Chemistry.84 (2):377–410.doi:10.1351/PAC-REC-10-12-04.S2CID 98107080. Archived fromthe original(PDF) on 2015-03-19. Retrieved2013-07-27.
  2. ^abBellwood, D. R. (1995). "Direct estimate of bioerosion by two parrotfish species,Chlorurus gibbus andC. sordidus, on the Great Barrier Reef, Australia".Marine Biology.121 (3):419–429.Bibcode:1995MarBi.121..419B.doi:10.1007/BF00349451.S2CID 85045930.
  3. ^abBromley, R. G (1970). "Borings as trace fossils andEntobia cretacea Portlock as an example". In Crimes, T.P.; Harper, J.C. (eds.).Trace Fossils. Geological Journal Special Issue 3. pp. 49–90.
  4. ^abPalmer, T. J. (1982)."Cambrian to Cretaceous changes in hardground communities".Lethaia.15 (4):309–323.Bibcode:1982Letha..15..309P.doi:10.1111/j.1502-3931.1982.tb01696.x.
  5. ^abcTaylor, P. D.; Wilson, M. A. (2003)."Palaeoecology and evolution of marine hard substrate communities"(PDF).Earth-Science Reviews.62 (1–2):1–103.Bibcode:2003ESRv...62....1T.doi:10.1016/S0012-8252(02)00131-9. Archived fromthe original(PDF) on 2009-03-25.
  6. ^abcWilson, M. A.; Palmer, T. J. (2006)."Patterns and processes in the Ordovician Bioerosion Revolution"(PDF).Ichnos.13 (3):109–112.Bibcode:2006Ichno..13..109W.doi:10.1080/10420940600850505.S2CID 128831144. Archived fromthe original(PDF) on 2008-12-16.
  7. ^abBromley, R. G. (2004). "A stratigraphy of marine bioerosion". In D. McIlroy (ed.).The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London, Special Publications 228. London: Geological Society. pp. 455–481.ISBN 1-86239-154-8.
  8. ^abWilson, M. A. (2007). "Macroborings and the evolution of bioerosion". In Miller III, W (ed.).Trace fossils: concepts, problems, prospects. Amsterdam: Elsevier. pp. 356–367.ISBN 978-0-444-52949-7.
  9. ^abGlaub, I.; Vogel, K. (2004). "The stratigraphic record of microborings".Fossils & Strata.51:126–135.doi:10.18261/9781405169851-2004-08.ISBN 978-1-4051-6985-1.ISSN 0300-9491.
  10. ^abGlaub, I.; Golubic, S.; Gektidis, M.; Radtke, G.; Vogel, K. (2007). "Microborings and microbial endoliths: geological implications". In Miller III, W (ed.).Trace fossils: concepts, problems, prospects. Amsterdam: Elsevier. pp. 368–381.ISBN 978-0-444-52949-7.
  11. ^abWilson, M. A.; Palmer, T. J. (2001). "Domiciles, not predatory borings: a simpler explanation of the holes in Ordovician shells analyzed by Kaplan and Baumiller, 2000".PALAIOS.16 (5):524–525.Bibcode:2001Palai..16..524W.doi:10.1669/0883-1351(2001)016<0524:DNPBAS>2.0.CO;2.S2CID 130036115.
  12. ^abWilson, M. A.; Palmer, T. J. (1994). "A carbonate hardground in the Carmel Formation (Middle Jurassic, SW Utah, USA) and its associated encrusters, borers and nestlers".Ichnos.3 (2):79–87.Bibcode:1994Ichno...3...79W.doi:10.1080/10420949409386375.
  13. ^abWilson, M. A. (1986). "Coelobites and spatial refuges in a Lower Cretaceous cobble-dwelling hardground fauna".Palaeontology.29:691–703.ISSN 0031-0239.
  14. ^abVinn, O.; Wilson, M. A.; Mõtus, M.-A. (2014)."The Earliest Giant Osprioneides Borings from the Sandbian (Late Ordovician) of Estonia".PLOS ONE.9 (6: e99455) e99455.Bibcode:2014PLoSO...999455V.doi:10.1371/journal.pone.0099455.PMC 4047083.PMID 24901511.

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related toBioerosion.
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bioerosion&oldid=1312674707"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp