Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Biocapacity

From Wikipedia, the free encyclopedia
Estimate of an ecosystem's production of certain biological materials
Not to be confused withCarrying capacity.

Thebiocapacity orbiological capacity of anecosystem is an estimate of its production of certain biological materials such asnatural resources, and its absorption and filtering of other materials such ascarbon dioxide from the atmosphere.[1][2]

Biocapacity is used together withecological footprint as a method of measuringhuman impact on the environment. Biocapacity and ecological footprint are tools created by theGlobal Footprint Network, used in sustainability studies around the world.

Biocapacity is expressed in terms ofglobal hectares per person, thus is dependent on human population. A global hectare is an adjusted unit that represents the average biological productivity of all productivehectares on Earth in a given year (because not all hectares produce the same amount ofecosystem services). Biocapacity is calculated fromUnited Nations population and land use data, and may be reported at various regional levels, such as a city, a country, or the world as a whole.

For example, there were roughly 12.2 billion hectares of biologically productive land and water areas on this planet in 2016. Dividing by the number of people alive in that year, 7.4 billion, gives abiocapacity for the Earth of 1.6 global hectares per person. These 1.6 global hectares includes the areas for wild species that compete with people for space.[3]

Applications of biocapacity

[edit]

An increase in global population can result in a decrease in biocapacity. This is usually because the Earth's resources have to be shared; therefore, there becomes little to supply the increasing demand of the increasingpopulation.[4] Currently, this issue can be resolved byoutsourcing. However, resources will run out due to the increasing demands and as a result a collapse of an ecosystem can be the consequence of such actions.[4] When theecological footprint becomes greater than the biocapacity of the population, abiocapacity deficit is suspected.[5]'Global biocapacity' is a term sometimes used to describe the total capacity of an ecosystem to support various continuous activity and changes. When theecological footprint of a population exceeds the biocapacity of the environment it lives in, this is called an 'biocapacity deficit'. Such a deficit comes from three sources: overusing one's own ecosystems ("overshoot"), net imports, or use of the global commons.[5][6] Latest data fromGlobal Footprint Network suggests that humanity was using an equivalence of 1.7 Earths in 2016.[7] More recent research marking the thirtieth anniversary of Ecological Footprint accounting reports that by 2023, humanity’s demand exceeded Earth’s regenerative capacity by about 75 percent, equivalent to using the resources of 1.75 Earths.[8]

The dominant factor of global ecologicalovershoot comes from carbon dioxide emissions stemming from fossil fuel burning.[9] Additional stresses ofgreenhouse gases,climate change, andocean acidification can also aggravate the problem.[4]

In reference to the definition of biocapacity: 1.7 Earths means therenewable resources are being liquidated because they are being consumed faster than the resources can regenerate.[4] Therefore, it will take one year and eight months for the resources humanity uses in one year to be able to regenerate again, including absorbing all the waste we generate.[4] So instead of taking one year's worth of resources per year, we are yearly consumingresources thatshould last us one year and eight months.

In addition, if this matter becomes severe, anecological reserve will be set on areas to preserve their ecosystems. Awareness about our depleting resources include:agricultural land,forest resources andrangeland.[10] Biocapacity used in correlation to ecological footprint can therefore suggest whether a specific population, region, country or part of a world is living in the means of their capital. Accordingly, the study of biocapacity and ecological footprint is known as theEcological Footprint Analysis (EFA).[1]

Biocapacity is also affected by thetechnology used during the year. With new technologies emerging, it is not clear whether the technology in that year is good or bad but the technology does impact resource supply and demand, which in turn affects biocapacity.[1] Hence what is considered "useful" can change from year to year (e.g. use of corn (maize) stover forcellulosic ethanol production would result in corn stover becoming a useful material, and thus increase the biocapacity of maize cropland).

Moreover, environmentalists have createdecological footprint calculators for a single person(s) to determine whether they are encompassing more than what is available for them in their population.[11] Consequently, biocapacity results will be applied to their ecological footprint to determine how much they may contribute or take away from sustainable development.

In general, biocapacity is the amount of resources available to people at a specific moment in time to a specific population (supply) and to differentiate between ecological footprint – which is the environmental demand of aregional ecosystem.[11] Biocapacity is able to determine the human impacts on Earth. By determining productivity of land (i.e. the resources available for human consumption), biocapacity will be able to predict and perhaps examine the effects on the ecosystems closely based on collected results of human consumption. The biocapacity of an area is calculated by multiplying the actual physical area by the yield factor with the appropriate equivalence factor. Biocapacity is usually expressed inglobal hectares (gha).[12] Since global hectares is able to converthuman consumptions like food and water into a measurement, biocapacity can be applied to determine thecarrying capacity of the Earth. Likewise, because an economy is tied to various production factors such as natural resources, biocapacity can also be applied to determinehuman capital.[13]

See also

[edit]

References

[edit]
  1. ^abc"Frequently Asked Questions".Global Footprint Network: Advancing the Science of Sustainability. Retrieved11 August 2014.
  2. ^Yue, Dongxia; Guo, Jianjun; Hui, Cang (2013). "Scale dependency of biocapacity and the fallacy of unsustainable development".Journal of Environmental Management.126:13–19.Bibcode:2013JEnvM.126...13Y.doi:10.1016/j.jenvman.2013.04.022.hdl:10019.1/118295.PMID 23648317.
  3. ^"Ecological Wealth of Nations: Earth's Biocapacity as a new framework for International Cooperation". Archived fromthe original on 2012-05-06. Retrieved2011-12-21.
  4. ^abcde"What does ecological overshoot mean?".World Wildlife Fund. WWF. Retrieved11 August 2014.
  5. ^ab"Natures regenerative capacity".World Wildlife Fund. WWF. Retrieved11 August 2014.
  6. ^Venetoulis, Jason; Talberth, John (5 January 2007). "Refining the ecological footprint".Environment, Development and Sustainability.10 (4):441–469.doi:10.1007/s10668-006-9074-z.S2CID 153900117.
  7. ^"Open Data Platform".
  8. ^Rees, W.E.; Wackernagel, M. (2023)."Ecological Footprint Accounting: Thirty Years and Still Going"(PDF).Ecological Questions.34:1–12.doi:10.1080/00139157.2023.2225405. Retrieved2025-10-25.
  9. ^Blomqvist, Linus; Brook, Barry W.; Ellis, Erle C.; Kareiva, Peter M.; Nordhaus, Ted; Shellenberger, Michael (2013)."Does the Shoe Fit? Real versus Imagined Ecological Footprints".PLOS Biology.11 (11) e1001700. PLOS biology journal.doi:10.1371/journal.pbio.1001700.PMC 3818165.PMID 24223517.
  10. ^Hayden, Anders (December 30, 2013)."ecological footprint (EF)".Encyclopædia Britannica. Encyclopædia Britannica Inc. Retrieved11 August 2014.
  11. ^abHopton, Matthew E.; White, Denis (2012). "A simplified ecological footprint at a regional scale".Journal of Environmental Management.111:279–286.Bibcode:2012JEnvM.111..279H.doi:10.1016/j.jenvman.2011.07.005.PMID 22033065.
  12. ^"Bioresources, Biocapacity of Ecosystems, and related terms".Michel Serres Institute: for resources and public goods. Retrieved11 August 2014.
  13. ^Ünal, Huseyin; Aktuğ, Muhammet (11 February 2022)."The impact of human capital and bio-capacity on the environmental quality: evidence from G20 countries".Environ Sci Pollut Res.29 (30):45635–45645.Bibcode:2022ESPR...2945635U.doi:10.1007/s11356-022-19122-0.PMID 35149945.S2CID 246752753. Retrieved29 April 2023.

Other resources

[edit]

Videos

Finding Australia's biocapacity Dr Mathis Wackernagel explains biocapacity and how it's calculated.
Ecological Balance Sheets for 180+ CountriesGlobal Footprint Network

Peer-reviewed Articles

The importance of resource security for poverty eradication;
Defying the Footprint Oracle: Implications of Country Resource Trends

Data

Results from the National Footprint and Biocapacity Accounts
Major topics
Society and
population
Publications
Lists
Events and
organizations
Related topics
Global
Continents/subregions
Intercontinental
Cities/urban areas
Past and future
Population density
Growth indicators
Life expectancy
Otherdemographics
Health
Education and innovation
Economic
Retrieved from "https://en.wikipedia.org/w/index.php?title=Biocapacity&oldid=1318677559"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp