This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Binary decoder" – news ·newspapers ·books ·scholar ·JSTOR(May 2009) (Learn how and when to remove this message) |
Indigital electronics, abinary decoder is acombinational logic circuit that converts binary information from the n coded inputs to a maximum of 2n unique outputs. They are used in a wide variety of applications, including instruction decoding, datamultiplexing and data demultiplexing,seven segment displays, and asaddress decoders formemory andport-mapped I/O.
There are several types of binary decoders, but in all cases a decoder is an electronic circuit with multiple input and multiple output signals, which converts every unique combination of input states to a specific combination of output states. In addition to integer data inputs, some decoders also have one or more "enable" inputs. When the enable input is negated (disabled), all decoder outputs are forced to their inactive states.
Depending on its function, a binary decoder will convert binary information from n input signals to as many as 2n unique output signals. Some decoders have less than 2n output lines; in such cases, at least one output pattern may be repeated for different input values.
A binary decoder is usually implemented as either a stand-aloneintegrated circuit (IC) or as part of a more complex IC. In the latter case the decoder may be synthesized by means of ahardware description language such asVHDL orVerilog. Widely used decoders are often available in the form of standardized ICs.

A 1-of-n binary decoder has n output bits. This type of decoder asserts exactly one of its n output bits, or none of them, for every integer input value. The "address" (bit number) of the activated output is specified by the integer input value. For example, output bit number 0 is selected when the integer value 0 is applied to the inputs.
Examples of this type of decoder include:
Code translators differ from 1-of-n decoders in that multiple output bits may be active at the same time. An example of this is aseven-segment decoder, which converts an integer into the combination of segment control signals needed to display the integer's value on aseven-segment display digit.
One variant of seven-segment decoder is theBCD to seven-segment decoder, which translates a binary-coded decimal value into the corresponding segment control signals for input integer values 0 to 9. This decoder function is available in standard ICs such as the CMOS4511.
A binary to unary decoder converts each binary value to its associatedunary representation, in which multiple output bits may be asserted. These decoders can be used inDACs where each bit is equally weighted, and circuits that require a binarymask or window.[1]