Bimetric gravity orbigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories ofgravity (or gravitation) in which twometric tensors are used instead of one.[1][2] The second metric may be introduced at high energies, with the implication that thespeed of light could be energy-dependent, enabling models with avariable speed of light.
If the two metrics are dynamical and interact, a first possibility implies twograviton modes, one massive and one massless; such bimetric theories are then closely related tomassive gravity.[3] Several bimetric theories with massive gravitons exist, such as those attributed toNathan Rosen (1909–1995)[4][5][6] orMordehai Milgrom with relativistic extensions ofModified Newtonian Dynamics (MOND).[7] More recently, developments in massive gravity have also led to new consistent theories of bimetric gravity.[8] Though none has been shown to account for physical observations more accurately or more consistently than the theory ofgeneral relativity, Rosen's theory has been shown to be inconsistent with observations of theHulse–Taylor binary pulsar.[5] Some of these theories lead tocosmic acceleration at late times and are therefore alternatives todark energy.[9][10] Bimetric gravity is also at odds with measurements of gravitational waves emitted by the neutron-star mergerGW170817.[11]
In 1940, Rosen[1][2] proposed that at each point of space-time, there is aEuclidean metrictensor in addition to the Riemannian metric tensor. Thus at each point of space-time there are two metrics:
The first metric tensor,, describes the geometry of space-time and thus the gravitational field. The second metric tensor,, refers to the flat space-time and describes the inertial forces. TheChristoffel symbols formed from and are denoted by and respectively.
Since the difference of twoconnections is a tensor, one can define the tensor field given by:
1
Two kinds of covariant differentiation then arise:-differentiation based on (denoted by a semicolon, e.g.), and covariant differentiation based on (denoted by a slash, e.g.). Ordinary partial derivatives are represented by a comma (e.g.). Let and be theRiemann curvature tensors calculated from and, respectively. In the above approach the curvature tensor is zero, since is the flat space-time metric.
Each term on the right hand side is a tensor. It is seen that from GR one can go to the new formulation just by replacing {:} by and ordinary differentiation by covariant-differentiation, by, integration measure by, where, and. Having once introduced into the theory, one has a great number of new tensors and scalars at one's disposal. One can set up other field equations other than Einstein's. It is possible that some of these will be more satisfactory for the description of nature.
The geodesic equation inbimetric relativity (BR) takes the form
2
It is seen from equations (1) and (2) that can be regarded as describing the inertial field because it vanishes by a suitable coordinate transformation.
Being the quantity a tensor, it is independent of any coordinate system and hence may be regarded as describing the permanent gravitational field.
Rosen (1973) has found BR satisfying the covariance and equivalence principle. In 1966, Rosen showed that the introduction of the space metric into the framework of general relativity not only enables one to get the energy momentum density tensor of the gravitational field, but also enables one to obtain this tensor from a variational principle. The field equations of BR derived from the variational principle are
3
where
or
with
,
and is the energy-momentum tensor.
The variational principle also leads to the relation
which implies that in a BR, a test particle in a gravitational field moves on ageodesic with respect to
Rosen continued improving his bimetric gravity theory with additional publications in 1978[18] and 1980,[19] in which he made an attempt "to remove singularities arising in general relativity by modifying it so as to take into account the existence of a fundamental rest frame in the universe." In 1985[20] Rosen tried again to remove singularities and pseudo-tensors from General Relativity. Twice in 1989 with publications in March[21] and November[22] Rosen further developed his concept of elementary particles in a bimetric field of General Relativity.
It is found that the BR and GR theories differ in the following cases:
propagation of electromagnetic waves
the external field of a high density star
the behaviour of intense gravitational waves propagating through a strong static gravitational field.
The predictions of gravitational radiation in Rosen's theory have been shown since 1992 to be in conflict with observations of theHulse–Taylor binary pulsar.[5]
Since 2010 there has been renewed interest in bigravity after the development byClaudia de Rham,Gregory Gabadadze, andAndrew Tolley (dRGT) of a healthy theory of massive gravity.[23] Massive gravity is a bimetric theory in the sense that nontrivial interaction terms for the metric can only be written down with the help of a second metric, as the only nonderivative term that can be written using one metric is acosmological constant. In the dRGT theory, a nondynamical "reference metric" is introduced, and the interaction terms are built out of thematrix square root of.
In dRGT massive gravity, the reference metric must be specified by hand. One can give the reference metric anEinstein–Hilbert term, in which case is not chosen but instead evolves dynamically in response to and possibly matter. Thismassive bigravity was introduced byFawad Hassan andRachel Rosen as an extension of dRGT massive gravity.[3][24]
The dRGT theory is crucial to developing a theory with two dynamical metrics because general bimetric theories are plagued by theBoulware–Deser ghost, a possible sixth polarization for a massive graviton.[25] The dRGT potential is constructed specifically to render this ghost nondynamical, and as long as thekinetic term for the second metric is of the Einstein–Hilbert form, the resulting theory remains ghost-free.[3]
Theaction for the ghost-free massive bigravity is given by[26]
As in standard general relativity, the metric has an Einstein–Hilbert kinetic term proportional to theRicci scalar and a minimal coupling to the matter Lagrangian, with representing all of the matter fields, such as those of theStandard Model. An Einstein–Hilbert term is also given for. Each metric has its ownPlanck mass, denoted and respectively. The interaction potential is the same as in dRGT massive gravity. The are dimensionless coupling constants and (or specifically) is related to the mass of the massive graviton. This theory propagates seven degrees of freedom, corresponding to a massless graviton and a massive graviton (although the massive and massless states do not align with either of the metrics).
The interaction potential is built out of theelementary symmetric polynomials of the eigenvalues of the matrices or, parametrized by dimensionless coupling constants or, respectively. Here is thematrix square root of the matrix. Written in index notation, is defined by the relation
The can be written directly in terms of as
where brackets indicate atrace,. It is the particular antisymmetric combination of terms in each of the which is responsible for rendering the Boulware–Deser ghost nondynamical.
^abcWill, Clifford (1992). "The renaissance of general relativity". InDavies, Paul (ed.).The New Physics. Cambridge University Press. p. 18.ISBN978-0-521-43831-5.OCLC824636830.One interesting by-product of this was the knocking down of the Rosen bimetric theory of gravity, which hitherto was in agreement with solar system experiments. The theory turned out to make radically different predictions for gravitational wave energy loss than general relativity, and was in severe disagreement with the observations.
^ "Nathan Rosen — The Man and His Life-Work", Technion.ac.il, 2011, web:Technion-rosen.
^Hossenfelder, Sabine (June 2009).Antigravitation. 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions. Boston: American Institute of Physics.arXiv:0909.3456.doi:10.1063/1.3327545.
^O'Dowd, Matt (7 February 2019)."Sound Waves from the Beginning of Time".PBS Space Time.PBS. 16 minutes in. Retrieved8 February 2019.An alternate model that how negative mass might behave: in so-called 'bimetric gravity' you can have positive and negative masses, but each is described by its own set of Einstein field equations. That's kinda like having 'parallel spacetimes', one with positive and one with negative masses, which can still interact gravitationally. In these models, like masses attract and opposite masses repel… and you don't get the crazy 'runaway motion' that occurs if you put both positive and negative masses in the same spacetime. So no perpetual motion machines… It can also be used to explain dark energy and dark matter.