Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Bilobalide

From Wikipedia, the free encyclopedia
Chemical compound

Pharmaceutical compound
Bilobalide
Clinical data
Routes of
administration
By mouth
Legal status
Legal status
  • In general: legal
Identifiers
  • (5aR-(3aS*,5aα,8b,8aS*,9a,10aα))-9-(1,1-dimethylethyl)-10,10a-dihydro-8,9-dihydroxy-4H,5aH,9H-furo[2,3-b]furo[3',2':2,3]cyclopenta[1,2-c]furan-2,4,7(3H,8H)-trione
CAS Number
PubChemCID
IUPHAR/BPS
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard(EPA)
ECHA InfoCard100.125.716Edit this at Wikidata
Chemical and physical data
FormulaC15H18O8
Molar mass326.301 g·mol−1
3D model (JSmol)
  • CC(C)(C)[C@@]1(C[C@H]2[C@@]3([C@]14[C@H](C(=O)O[C@H]4OC3=O)O)CC(=O)O2)O
  • InChI=1S/C15H18O8/c1-12(2,3)14(20)4-6-13(5-7(16)21-6)10(19)23-11-15(13,14)8(17)9(18)22-11/h6,8,11,17,20H,4-5H2,1-3H3/t6-,8-,11-,13-,14+,15?/m0/s1 checkY
  • Key:MOLPUWBMSBJXER-ISSLQHLCSA-N checkY
 ☒NcheckY (what is this?)  (verify)

Bilobalide is a biologically activeterpenic trilactone present inGinkgo biloba.[1]

Chemistry

[edit]

Bilobalide is a main constituent of the terpenoids found in Ginkgo leaves. It also exists in minor amounts in the roots. It is a sesquiterpenoid, i.e. it has a 15-carbon skeleton. Its exact synthesis pathway fromfarnesyl pyrophosphate is still unknown.

Biosynthesis

[edit]

Bilobalide and ginkgolide have similar biosynthetic pathways. Bilobalide is formed by partially degraded ginkgolide. Bilobalide is derived fromgeranylgeranyl pyrophosphate (GGPP), which is formed by addition offarnesyl pyrophosphate (FPP) to anisopentenyl pyrophosphate (IPP) unit to form a C15sesquiterpene. Such formation went through themevalonate pathway (MVA) andmethylerythritol phosphate MEP pathway. In order to generate bilobalide, C20 ginkgolide 13 must form first. To transform from GGPP to abietenyl cation 5, a single bifunctional enzymeabietadiene synthase E1 is required. However, due to the complexity of ginkgolide structures for rearrangement, ring cleavage, and formation of lactone rings, diterpene 8 is used to explain instead. Levopimaradiene 6 and abietatriene 7 are precursors for ginkgolide and bilobalide formation. The unusual tert-butyl substituent is formed from A ring cleavage in 9. Bilobalide 13 then formed in loss of carbons through degradation from ginkgolide 12, and lactones are formed from residual carboxyl and alcohol functions. The end product of bilobalide contains sesquiterpenes and three lactones units.[2]

Biosynthesis mechanism of Bilobalide.

Pharmacology

[edit]

Bilobalide is important for producing several of the effects ofGinkgo biloba extracts, and it has neuroprotective effects,[3][4] as well as inducing the liver enzymes CYP3A1 andCYP1A2,[5] which may be partially responsible for interactions between ginkgo and other herbal medicines or pharmaceutical drugs. Bilobalide has recently been found to be anegative allosteric modulator at theGABAA andGABAA-rho receptors.[6] Of GABAA, it may possibly be selective for the subunits predominantly implicated in cognitive and memory functioning such asα1[citation needed].

See also

[edit]

References

[edit]
  1. ^van Beek TA, Montoro P (March 2009). "Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals".Journal of Chromatography A.1216 (11):2002–2032.doi:10.1016/j.chroma.2009.01.013.PMID 19195661.
  2. ^Dewick PM (2009).Medicinal Natural Products: Products: A Biosynthetic Approach (Third ed.). West Sussex, England: Wiley&Sons. pp. 230–232.ISBN 978-0-470-74168-9.
  3. ^Defeudis FV (December 2002). "Bilobalide and neuroprotection".Pharmacological Research.46 (6):565–568.doi:10.1016/S1043-6618(02)00233-5.PMID 12457632.
  4. ^Kiewert C, Kumar V, Hildmann O, Hartmann J, Hillert M, Klein J (March 2008). "Role of glycine receptors and glycine release for the neuroprotective activity of bilobalide".Brain Research.1201:143–150.doi:10.1016/j.brainres.2008.01.052.PMID 18325484.S2CID 5191088.
  5. ^Deng Y, Bi HC, Zhao LZ, He F, Liu YQ, Yu JJ, et al. (May 2008). "Induction of cytochrome P450s by terpene trilactones and flavonoids of the Ginkgo biloba extractEGb 761 in rats".Xenobiotica; the Fate of Foreign Compounds in Biological Systems.38 (5):465–481.doi:10.1080/00498250701883233.PMID 18421621.S2CID 84019088.
  6. ^Johnston GA, Hanrahan JR, Chebib M, Duke RK, Mewett KN (2006)."Modulation of ionotropic GABA receptors by natural products of plant origin"(PDF).GABA. Advances in Pharmacology. Vol. 54. Elsevier. pp. 285–316.doi:10.1016/s1054-3589(06)54012-8.ISBN 978-0-12-032957-1.PMID 17175819. Archived fromthe original(PDF) on 9 November 2020. Retrieved2024-05-04.

External links

[edit]
Ionotropic
GABAATooltip γ-Aminobutyric acid A receptor
GABAATooltip γ-Aminobutyric acid A-rho receptor
Metabotropic
GABABTooltip γ-Aminobutyric acid B receptor
Receptor
(ligands)
GlyRTooltip Glycine receptor
NMDARTooltip N-Methyl-D-aspartate receptor
Transporter
(blockers)
GlyT1Tooltip Glycine transporter 1
GlyT2Tooltip Glycine transporter 2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Bilobalide&oldid=1321796596"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp