This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Bilinear transform" – news ·newspapers ·books ·scholar ·JSTOR(June 2009) (Learn how and when to remove this message) |

Thebilinear transform (also known asTustin's method, afterArnold Tustin) is used indigital signal processing and discrete-timecontrol theory to transform continuous-time system representations to discrete-time and vice versa.
The bilinear transform is a special case of aconformal mapping (namely, aMöbius transformation), often used for converting atransfer function of alinear,time-invariant (LTI) filter in thecontinuous-time domain (often named ananalog filter) to a transfer function of a linear, shift-invariant filter in thediscrete-time domain (often named adigital filter although there are analog filters constructed withswitched capacitors that are discrete-time filters). It maps positions on the axis,, in thes-plane to theunit circle,, in thez-plane. Other bilinear transforms can be used for warping thefrequency response of any discrete-time linear system (for example to approximate the non-linear frequency resolution of the human auditory system) and are implementable in the discrete domain by replacing a system's unit delays with first orderall-pass filters.
The transform preservesstability and maps every point of thefrequency response of the continuous-time filter, to a corresponding point in the frequency response of the discrete-time filter, although to a somewhat different frequency, as shown in theFrequency warping section below. This means that for every feature that one sees in the frequency response of the analog filter, there is a corresponding feature, with identical gain and phase shift, in the frequency response of the digital filter but, perhaps, at a somewhat different frequency. The change in frequency is barely noticeable at low frequencies but is quite evident at frequencies close to theNyquist frequency.
The bilinear transform is a first-orderPadé approximant of the natural logarithm function that is an exact mapping of thez-plane to thes-plane. When theLaplace transform is performed on a discrete-time signal (with each element of the discrete-time sequence attached to a correspondingly delayedunit impulse), the result is precisely theZ transform of the discrete-time sequence with the substitution of
where is thenumerical integration step size of thetrapezoidal rule used in the bilinear transform derivation;[1] or, in other words, the sampling period. The above bilinear approximation can be solved for or a similar approximation for can be performed.
The inverse of this mapping (and its first-order bilinearapproximation) is
The bilinear transform essentially uses this first order approximation and substitutes into the continuous-time transfer function,
That is
A continuous-timecausal filter isstable if thepoles of its transfer function fall in the left half of thecomplexs-plane. A discrete-time causal filter is stable if the poles of its transfer function fall inside theunit circle in thecomplex z-plane. The bilinear transform maps the left half of the complex s-plane to the interior of the unit circle in the z-plane. Thus, filters designed in the continuous-time domain that are stable are converted to filters in the discrete-time domain that preserve that stability.
Likewise, a continuous-time filter isminimum-phase if thezeros of its transfer function fall in the left half of the complex s-plane. A discrete-time filter is minimum-phase if the zeros of its transfer function fall inside the unit circle in the complex z-plane. Then the same mapping property assures that continuous-time filters that are minimum-phase are converted to discrete-time filters that preserve that property of being minimum-phase.
A generalLTI system has the transfer functionThe order of the transfer functionN is the greater ofP andQ (in practice this is most likelyP as the transfer function must beproper for the system to be stable). Applying the bilinear transformwhereK is defined as either2/T or otherwise if usingfrequency warping, givesMultiplying the numerator and denominator by the largest power of(z + 1)−1 present,(z + 1)−N, givesIt can be seen here that after the transformation, the degree of the numerator and denominator are bothN.
Consider then the pole-zero form of the continuous-time transfer functionThe roots of the numerator and denominator polynomials,ξi andpi, are thezeros and poles of the system. The bilinear transform is aone-to-one mapping, hence these can be transformed to the z-domain usingyielding some of the discretized transfer function's zeros and polesξ'i andp'iAs described above, the degree of the numerator and denominator are now bothN, in other words there is now an equal number of zeros and poles. The multiplication by(z + 1)−N means the additional zeros or poles are[2]Given the full set of zeros and poles, the z-domain transfer function is then
As an example take a simplelow-passRC filter. This continuous-time filter has a transfer function
If we wish to implement this filter as a digital filter, we can apply the bilinear transform by substituting for the formula above; after some reworking, we get the following filter representation:
The coefficients of the denominator are the 'feed-backward' coefficients and the coefficients of the numerator are the 'feed-forward' coefficients used for implementing a real-timedigital filter.
It is possible to relate the coefficients of a continuous-time, analog filter with those of a similar discrete-time digital filter created through the bilinear transform process. Transforming a general, first-order continuous-time filter with the given transfer function
using the bilinear transform (without prewarping any frequency specification) requires the substitution of
where
However, if the frequency warping compensation as described below is used in the bilinear transform, so that both analog and digital filter gain and phase agree at frequency, then
This results in a discrete-time digital filter with coefficients expressed in terms of the coefficients of the original continuous time filter:
Normally the constant term in the denominator must be normalized to 1 before deriving the correspondingdifference equation. This results in
The difference equation (using theDirect form I) is
A similar process can be used for a general second-order filter with the given transfer function
This results in a discrete-timedigital biquad filter with coefficients expressed in terms of the coefficients of the original continuous time filter:
Again, the constant term in the denominator is generally normalized to 1 before deriving the correspondingdifference equation. This results in
The difference equation (using theDirect form I) is
To determine the frequency response of a continuous-time filter, thetransfer function is evaluated at which is on the axis. Likewise, to determine the frequency response of a discrete-time filter, the transfer function is evaluated at which is on the unit circle,. The bilinear transform maps the axis of thes-plane (which is the domain of) to the unit circle of thez-plane, (which is the domain of), but it isnot the same mapping which also maps the axis to the unit circle. When the actual frequency of is input to the discrete-time filter designed by use of the bilinear transform, then it is desired to know at what frequency,, for the continuous-time filter that this is mapped to.
This shows that every point on the unit circle in the discrete-time filter z-plane, is mapped to a point on the axis on the continuous-time filter s-plane,. That is, the discrete-time to continuous-time frequency mapping of the bilinear transform is
and the inverse mapping is
The discrete-time filter behaves at frequency the same way that the continuous-time filter behaves at frequency. Specifically, the gain and phase shift that the discrete-time filter has at frequency is the same gain and phase shift that the continuous-time filter has at frequency. This means that every feature, every "bump" that is visible in the frequency response of the continuous-time filter is also visible in the discrete-time filter, but at a different frequency. For low frequencies (that is, when or), then the features are mapped to aslightly different frequency;.
One can see that the entire continuous frequency range
is mapped onto the fundamental frequency interval
The continuous-time filter frequency corresponds to the discrete-time filter frequency and the continuous-time filter frequency correspond to the discrete-time filter frequency
One can also see that there is a nonlinear relationship between and This effect of the bilinear transform is calledfrequency warping. The continuous-time filter can be designed to compensate for this frequency warping by setting for every frequency specification that the designer has control over (such as corner frequency or center frequency). This is calledpre-warping thefilter design.
It is possible, however, to compensate for the frequency warping by pre-warping a frequency specification (usually a resonant frequency or the frequency of the most significant feature of the frequency response) of the continuous-time system. These pre-warped specifications may then be used in the bilinear transform to obtain the desired discrete-time system. When designing a digital filter as an approximation of a continuous time filter, the frequency response (both amplitude and phase) of the digital filter can be made to match the frequency response of the continuous filter at a specified frequency, as well as matching at DC, if the following transform is substituted into the continuous filter transfer function.[3] This is a modified version of Tustin's transform shown above.
However, note that this transform becomes the original transform
as.
The main advantage of the warping phenomenon is the absence of aliasing distortion of the frequency response characteristic, such as observed withImpulse invariance.