Betti's theorem, also known asMaxwell–Betti reciprocal work theorem, discovered byEnrico Betti in 1872, states that for a linear elastic structure subject to two sets of forces {Pi} i=1,...,n and {Qj}, j=1,2,...,n, thework done by the set P through the displacements produced by the set Q is equal to the work done by the set Q through the displacements produced by the set P. This theorem has applications instructural engineering where it is used to defineinfluence lines and derive theboundary element method.
Betti's theorem is used in the design of compliant mechanisms by topology optimization approach.
Consider a solid body subjected to a pair of external force systems, referred to as and. Consider that each force system causes a displacement field, with the displacements measured at the external force's point of application referred to as and.
When the force system is applied to the structure, the balance between the work performed by the external force system and the strain energy is:
The work-energy balance associated with the force system is as follows:
Now, consider that with the force system applied, the force system is applied subsequently. As the is already applied and therefore won't cause any extra displacement, the work-energy balance assumes the following expression:
Conversely, if we consider the force system already applied and the external force system applied subsequently, the work-energy balance will assume the following expression:
If the work-energy balance for the cases where the external force systems are applied in isolation are respectively subtracted from the cases where the force systems are applied simultaneously, we arrive at the following equations:
Elastic energy is, where is the displacement vector and is thestiffness matrix of the system. is symmetric and positive definite. Forces at these points are given byHooke's law
For a simple example let n=2. Consider a horizontalbeam on which two points have been defined: point 1 and point 2. First we apply a vertical force P at point 1 and measure the vertical displacement of point 2, denoted. Next we remove force P and apply a vertical force Q at point 2, which produces the vertical displacement at point 1 of. Betti's reciprocity theorem states that: