Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Betti's theorem

From Wikipedia, the free encyclopedia

Betti's theorem, also known asMaxwell–Betti reciprocal work theorem, discovered byEnrico Betti in 1872, states that for a linear elastic structure subject to two sets of forces {Pi} i=1,...,n and {Qj}, j=1,2,...,n, thework done by the set P through the displacements produced by the set Q is equal to the work done by the set Q through the displacements produced by the set P. This theorem has applications instructural engineering where it is used to defineinfluence lines and derive theboundary element method.

Betti's theorem is used in the design of compliant mechanisms by topology optimization approach.

Proof

[edit]

Consider a solid body subjected to a pair of external force systems, referred to asFiP{\displaystyle F_{i}^{P}} andFiQ{\displaystyle F_{i}^{Q}}. Consider that each force system causes a displacement field, with the displacements measured at the external force's point of application referred to asdiP{\displaystyle d_{i}^{P}} anddiQ{\displaystyle d_{i}^{Q}}.

When theFiP{\displaystyle F_{i}^{P}} force system is applied to the structure, the balance between the work performed by the external force system and the strain energy is:

12i=1nFiPdiP=12ΩσijPϵijPdΩ{\displaystyle {\frac {1}{2}}\sum _{i=1}^{n}F_{i}^{P}d_{i}^{P}={\frac {1}{2}}\int _{\Omega }\sigma _{ij}^{P}\epsilon _{ij}^{P}\,d\Omega }

The work-energy balance associated with theFiQ{\displaystyle F_{i}^{Q}} force system is as follows:

12i=1nFiQdiQ=12ΩσijQϵijQdΩ{\displaystyle {\frac {1}{2}}\sum _{i=1}^{n}F_{i}^{Q}d_{i}^{Q}={\frac {1}{2}}\int _{\Omega }\sigma _{ij}^{Q}\epsilon _{ij}^{Q}\,d\Omega }

Now, consider that with theFiP{\displaystyle F_{i}^{P}} force system applied, theFiQ{\displaystyle F_{i}^{Q}} force system is applied subsequently. As theFiP{\displaystyle F_{i}^{P}} is already applied and therefore won't cause any extra displacement, the work-energy balance assumes the following expression:

12i=1nFiPdiP+12i=1nFiQdiQ+i=1nFiPdiQ=12ΩσijPϵijPdΩ+12ΩσijQϵijQdΩ+ΩσijPϵijQdΩ{\displaystyle {\frac {1}{2}}\sum _{i=1}^{n}F_{i}^{P}d_{i}^{P}+{\frac {1}{2}}\sum _{i=1}^{n}F_{i}^{Q}d_{i}^{Q}+\sum _{i=1}^{n}F_{i}^{P}d_{i}^{Q}={\frac {1}{2}}\int _{\Omega }\sigma _{ij}^{P}\epsilon _{ij}^{P}\,d\Omega +{\frac {1}{2}}\int _{\Omega }\sigma _{ij}^{Q}\epsilon _{ij}^{Q}\,d\Omega +\int _{\Omega }\sigma _{ij}^{P}\epsilon _{ij}^{Q}\,d\Omega }

Conversely, if we consider theFiQ{\displaystyle F_{i}^{Q}} force system already applied and theFiP{\displaystyle F_{i}^{P}} external force system applied subsequently, the work-energy balance will assume the following expression:

12i=1nFiQdiQ+12i=1nFiPdiP+i=1nFiQdiP=12ΩσijQϵijQdΩ+12ΩσijPϵijPdΩ+ΩσijQϵijPdΩ{\displaystyle {\frac {1}{2}}\sum _{i=1}^{n}F_{i}^{Q}d_{i}^{Q}+{\frac {1}{2}}\sum _{i=1}^{n}F_{i}^{P}d_{i}^{P}+\sum _{i=1}^{n}F_{i}^{Q}d_{i}^{P}={\frac {1}{2}}\int _{\Omega }\sigma _{ij}^{Q}\epsilon _{ij}^{Q}\,d\Omega +{\frac {1}{2}}\int _{\Omega }\sigma _{ij}^{P}\epsilon _{ij}^{P}\,d\Omega +\int _{\Omega }\sigma _{ij}^{Q}\epsilon _{ij}^{P}\,d\Omega }

If the work-energy balance for the cases where the external force systems are applied in isolation are respectively subtracted from the cases where the force systems are applied simultaneously, we arrive at the following equations:

i=1nFiPdiQ=ΩσijPϵijQdΩ{\displaystyle \sum _{i=1}^{n}F_{i}^{P}d_{i}^{Q}=\int _{\Omega }\sigma _{ij}^{P}\epsilon _{ij}^{Q}\,d\Omega }
i=1nFiQdiP=ΩσijQϵijPdΩ{\displaystyle \sum _{i=1}^{n}F_{i}^{Q}d_{i}^{P}=\int _{\Omega }\sigma _{ij}^{Q}\epsilon _{ij}^{P}\,d\Omega }

If the solid body where the force systems are applied is formed by alinear elastic material and if the force systems are such that onlyinfinitesimal strains are observed in the body, then the body'sconstitutive equation, which may followHooke's law, can be expressed in the following manner:

σij=Dijklϵkl{\displaystyle \sigma _{ij}=D_{ijkl}\epsilon _{kl}}

Replacing this result in the previous set of equations leads us to the following result:

i=1nFiPdiQ=ΩDijklϵijPϵklQdΩ{\displaystyle \sum _{i=1}^{n}F_{i}^{P}d_{i}^{Q}=\int _{\Omega }D_{ijkl}\epsilon _{ij}^{P}\epsilon _{kl}^{Q}\,d\Omega }
i=1nFiQdiP=ΩDijklϵijQϵklPdΩ{\displaystyle \sum _{i=1}^{n}F_{i}^{Q}d_{i}^{P}=\int _{\Omega }D_{ijkl}\epsilon _{ij}^{Q}\epsilon _{kl}^{P}\,d\Omega }

If we subtract both equations then we obtain the following result:

i=1nFiPdiQ=i=1nFiQdiP{\displaystyle \sum _{i=1}^{n}F_{i}^{P}d_{i}^{Q}=\sum _{i=1}^{n}F_{i}^{Q}d_{i}^{P}}

Proof using stiffness matrix properties

[edit]

Elastic energy isE=12dTKd{\displaystyle E={\frac {1}{2}}d^{T}Kd}, whered{\displaystyle d} is the displacement vector andK{\displaystyle K} is thestiffness matrix of the system.K{\displaystyle K} is symmetric and positive definite. Forces at thesen{\displaystyle n} points are given byHooke's lawFP=KdP,FQ=KdQ{\displaystyle F^{P}=Kd^{P},F^{Q}=Kd^{Q}}

Therefore(FP)TdQ=(dP)TKTdQ=(dP)TKdQ=(dP)TFQ{\displaystyle (F^{P})^{T}d^{Q}=(d^{P})^{T}K^{T}d^{Q}=(d^{P})^{T}Kd^{Q}=(d^{P})^{T}F^{Q}}

Example

[edit]

For a simple example let n=2. Consider a horizontalbeam on which two points have been defined: point 1 and point 2. First we apply a vertical force P at point 1 and measure the vertical displacement of point 2, denotedΔP2{\displaystyle \Delta _{P2}}. Next we remove force P and apply a vertical force Q at point 2, which produces the vertical displacement at point 1 ofΔQ1{\displaystyle \Delta _{Q1}}. Betti's reciprocity theorem states that:

PΔQ1=QΔP2.{\displaystyle P\,\Delta _{Q1}=Q\,\Delta _{P2}.}
Example of Betti's Theorem

See also

[edit]

References

[edit]
  • A. Ghali; A.M. Neville (1972).Structural analysis: a unified classical and matrix approach. London, New York: E & FN SPON. p. 215.ISBN 0-419-21200-0.
Dynamic analysis
Static analysis
Structural elements
1-dimensional
2-dimensional
Structural support
Theories
Retrieved from "https://en.wikipedia.org/w/index.php?title=Betti%27s_theorem&oldid=1322015593"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp