Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Barycenter (astronomy)

From Wikipedia, the free encyclopedia
(Redirected fromBarycenter)
Center of mass of multiple bodies orbiting each other
"Barycenter" redirects here. For the general concept, seeBarycenter (physics).

Animation of barycenters
Two bodies with similar mass, like the90 Antiope asteroid system
Two bodies with slightly different masses, likePluto andCharon
Two bodies with significant difference in masses, likeEarth and theMoon
Two bodies with an extreme difference in mass, like theSun andEarth
Two bodies with the same mass witheccentric elliptic orbits, common forbinary stars
Part of a series on
Astrodynamics
Efficiency measures

Inastronomy, thebarycenter (orbarycentre; from Ancient Greek βαρύς (barús) 'heavy' and κέντρον (kéntron) 'center')[1] is thecenter of mass around which two or more bodiesorbit. A barycenter is adynamical point, not a physical object. It is an important concept in fields such as astronomy andastrophysics. The distance from a body's center of mass to the barycenter can be calculated as atwo-body problem.

If one of the two orbiting bodies is much more massive than the other and the bodies are relatively close to one another, the barycenter will typically be located within the more massive object. In this case, rather than the two bodies appearing to orbit a point between them, the less massive body will appear to orbit about the more massive body, while the more massive body might be observed to wobble slightly. This is the case for theEarth–Moon system, whose barycenter is located on average 4,671 km (2,902 mi) from Earth's center, which is 74% of Earth's radius of 6,378 km (3,963 mi). When the two bodies are of similar masses, the barycenter will generally be located between them and both bodies will orbit around it. This is the case forPluto andCharon, one of Pluto'snatural satellites, as well as for manybinary asteroids andbinary stars. When the less massive object is far away, the barycenter can be located outside the more massive object. This is the case forJupiter and theSun; despite the Sun being a thousandfold more massive than Jupiter, their barycenter is slightly outside the Sun due to the relatively large distance between them.[2]

In astronomy,barycentric coordinates are non-rotating coordinates with the origin at the barycenter of two or more bodies. TheInternational Celestial Reference System (ICRS) is a barycentric coordinate system centered on theSolar System's barycenter.

Two-body problem

[edit]
Main article:Two-body problem

The barycenter is one of thefoci of theelliptical orbit of each body. This is an important concept in the fields ofastronomy andastrophysics. In a simple two-body case, the distance from the center of the primary to the barycenter,r1, is given by:r1=am2m1+m2=a1+m1m2{\displaystyle r_{1}=a\cdot {\frac {m_{2}}{m_{1}+m_{2}}}={\frac {a}{1+{\frac {m_{1}}{m_{2}}}}}}where:

  • r1 is thedistance from body 1's center to the barycenter;
  • a is the distance between the centers of the two bodies; and
  • m1 andm2 are themasses of the two bodies.

Thesemi-major axis of the secondary's orbit,r2, is given byr2 =ar1.

When the barycenter is locatedwithin the more massive body, that body will appear to "wobble" rather than to follow a discernible orbit.

Primary–secondary examples

[edit]

The following table sets out some examples from theSolar System. Figures are given rounded to threesignificant figures. The terms "primary" and "secondary" are used to distinguish between involved participants, with the larger being the primary and the smaller being the secondary.

  • m1 is the mass of the primary in Earth masses (M🜨)
  • m2 is the mass of the secondary in Earth masses (M🜨)
  • a (km) is the average orbital distance between the centers of the two bodies
  • r1 (km) is the distance from the center of the primary to the barycenter
  • R1 (km) is the radius of the primary
  • r1/R1 a value less than one means the barycenter lies inside the primary
Primary–secondary examples
PrimarySecondarym1
(M🜨)
m2
(M🜨)
a
(km)
r1
(km)
R1
(km)
r1/R1
EarthMoon10.0123384,4004,671[3]6,3710.733[a]
PlutoCharon0.0021
0.000254
(0.121 M)
  19,6002,1101,188.31.78[b]
SunEarth333,0001
150,000,000
(1AU)
449695,7000.000645[c]
SunJupiter333,000
318
(0.000955 M)
778,000,000
(5.20 AU)
742,370695,7001.07[5][d]
SunSaturn333,00095.2
1,433,530,000
(9.58 AU)
409,700695,7000.59
  1. ^The Earth has a perceptible "wobble". Also seetides.
  2. ^Pluto and Charon are sometimes considered abinary system because their barycenter does not lie within either body.[4]
  3. ^The Sun's wobble is barely perceptible.
  4. ^The Sun orbits a barycenter just above its surface.[6]

Example with the Sun

[edit]
Motion of theSolar System's barycenter relative to the Sun
The center of the solar system according to the position of the planets (Jupiter, Saturn, Uranus, Neptune)

Ifm1m2 – which is true for the Sun and any planet – then the ratior1/R1 approximates to:aR1m2m1.{\displaystyle {\frac {a}{R_{1}}}\cdot {\frac {m_{2}}{m_{1}}}.}

Hence, the barycenter of the Sun–planet system will lie outside the Sun only if:aRmplanetM>1amplanet>RM2.3×1011Mkm1530MAU;{\displaystyle {\begin{aligned}{a \over R_{\odot }}\cdot {m_{\mathrm {planet} } \over M_{\odot }}&>1\\\implies \;{a\cdot m_{\mathrm {planet} }}&>{R_{\odot }\cdot M_{\odot }}\\&\approx 2.3\times 10^{11}\;M_{\oplus }\;{\mbox{km}}\\&\approx 1530\;M_{\oplus }\;{\mbox{AU}};\end{aligned}}}that is, where the planet is massiveand far from the Sun.

If Jupiter hadMercury's orbit (57,900,000 km, 0.387 AU), the Sun–Jupiter barycenter would be approximately55,000 km from the center of the Sun (r1/R1 ≈ 0.08). But even if the Earth hadEris's orbit (1.02×1010 km, 68 AU), the Sun–Earth barycenter would still be within the Sun (just over30,000 km from the center).

To calculate the actual motion of the Sun, only the motions of the four giant planets (Jupiter, Saturn, Uranus, Neptune) need to be considered. The contributions of all other planets, dwarf planets, etc. are negligible. If the four giant planets were on a straight line on the same side of the Sun, the combined center of mass would lie at about 1.17 solar radii, or just over810,000 km, above the Sun's surface.[7]

The calculations above are based on the mean distance between the bodies and yield the mean valuer1. But all celestial orbits are elliptical, and the distance between the bodies varies between theapses, depending on theeccentricity,e. Hence, the position of the barycenter varies too, and it is possible in some systems for the barycenter to be sometimes inside and sometimes outside the more massive body. This occurs where:11e>r1R1>11+e.{\displaystyle {\frac {1}{1-e}}>{\frac {r_{1}}{R_{1}}}>{\frac {1}{1+e}}.}

The Sun–Jupiter system, witheJupiter = 0.0484, just fails to qualify:1.05 < 1.07 > 0.954.

Relativistic corrections

[edit]

Inclassical mechanics (Newtonian gravitation), this definition simplifies calculations and introduces no known problems. Ingeneral relativity (Einsteinian gravitation), complications arise because, while it is possible, within reasonable approximations, to define the barycenter, we find that the associated coordinate system does not fully reflect the inequality of clock rates at different locations.Brumberg explains how to set up barycentric coordinates in general relativity.[8]

The coordinate systems involve a world-time, i.e. a global time coordinate that could be set up bytelemetry. Individual clocks of similar construction will not agree with this standard, because they are subject to differinggravitational potentials or move at various velocities, so the world-time must be synchronized with some ideal clock that is assumed to be very far from the whole self-gravitating system. This time standard is calledBarycentric Coordinate Time (TCB).

Selected barycentric orbital elements

[edit]

Barycentric osculating orbital elements for some objects in the Solar System are as follows:[9]

Barycentric osculating orbital elements for selected Solar System objects
ObjectSemi-major axis
(inAU)
Apoapsis
(in AU)
Orbital period
(in years)
C/2006 P1 (McNaught)2,0504,10092,600
C/1996 B2 (Hyakutake)1,7003,41070,000
C/2006 M4 (SWAN)1,3002,60047,000
(308933) 2006 SQ3727991,57022,600
(87269) 2000 OO675491,07812,800
90377 Sedna50693711,400
2007 TG42250196711,200

For objects at such high eccentricity, barycentric coordinates are more stable than heliocentric coordinates for a given epoch because the barycentricosculating orbit is not as greatly affected by where Jupiter is on its 11.8 year orbit.[10]

See also

[edit]

References

[edit]
  1. ^"barycentre".Oxford English Dictionary (2nd ed.).Oxford University Press. 1989.
  2. ^MacDougal, Douglas W. (December 2012).Newton's Gravity: An Introductory Guide to the Mechanics of the Universe. Berlin:Springer Science & Business Media. p. 199.ISBN 978-1-4614-5444-1.
  3. ^Moore, P. (2005). "SOLAR SYSTEM | Moon".Encyclopedia of Geology. pp. 264–272.doi:10.1016/B0-12-369396-9/00077-0.ISBN 978-0-12-369396-9.barycentre lies 1700 km below the Earth's surface
    (6370km–1700km)
  4. ^Olkin, C. B.; Young, L. A.; Borncamp, D.; et al. (January 2015)."Evidence that Pluto's atmosphere does not collapse from occultations including the 2013 May 04 event".Icarus.246:220–225.Bibcode:2015Icar..246..220O.doi:10.1016/j.icarus.2014.03.026.hdl:10261/167246.
  5. ^"If You Think Jupiter Orbits the Sun, You're Mistaken".HowStuffWorks. 9 August 2016.The Sol-Jupiter barycenter sits 1.07 times the radius of the sun
  6. ^"What's a Barycenter?". Space Place @ NASA. 8 September 2005.Archived from the original on 23 December 2010. Retrieved20 January 2011.
  7. ^Meeus, Jean (1997),Mathematical Astronomy Morsels, Richmond, Virginia: Willmann-Bell, pp. 165–168,ISBN 0-943396-51-4
  8. ^Brumberg, Victor A. (1991).Essential Relativistic Celestial Mechanics. London: Adam Hilger.ISBN 0-7503-0062-0.
  9. ^Horizons output (30 January 2011)."Barycentric Osculating Orbital Elements for 2007 TG422". Archived fromthe original on 28 March 2014. Retrieved31 January 2011. (Select Ephemeris Type:Elements and Center:@0)
  10. ^Kaib, Nathan A.; Becker, Andrew C.; Jones, R. Lynne; Puckett, Andrew W.; Bizyaev, Dmitry; Dilday, Benjamin; Frieman, Joshua A.; Oravetz, Daniel J.; Pan, Kaike; Quinn, Thomas; Schneider, Donald P.; Watters, Shannon (2009). "2006 SQ372: A Likely Long-Period Comet from the Inner Oort Cloud".The Astrophysical Journal.695 (1):268–275.arXiv:0901.1690.Bibcode:2009ApJ...695..268K.doi:10.1088/0004-637X/695/1/268.S2CID 16987581.
Portals:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Barycenter_(astronomy)&oldid=1333479195"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp