Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Babenko–Beckner inequality

From Wikipedia, the free encyclopedia
Theorem of Fourier analysis

In mathematics, theBabenko–Beckner inequality (afterKonstantin I. Babenko [ru] andWilliam E. Beckner) is a sharpened form of theHausdorff–Young inequality having applications touncertainty principles in theFourier analysis ofLp spaces. The(qp)-norm of then-dimensionalFourier transform is defined to be[1]

Fq,p=supfLp(Rn)Ffqfp, where 1<p2, and 1p+1q=1.{\displaystyle \|{\mathcal {F}}\|_{q,p}=\sup _{f\in L^{p}(\mathbb {R} ^{n})}{\frac {\|{\mathcal {F}}f\|_{q}}{\|f\|_{p}}},{\text{ where }}1<p\leq 2,{\text{ and }}{\frac {1}{p}}+{\frac {1}{q}}=1.}

In 1961, Babenko[2] found this norm foreven integer values ofq. Finally, in 1975, usingHermite functions aseigenfunctions of the Fourier transform, Beckner[3] proved that the value of this norm for allq2{\displaystyle q\geq 2} is

Fq,p=(p1/p/q1/q)n/2.{\displaystyle \|{\mathcal {F}}\|_{q,p}=\left(p^{1/p}/q^{1/q}\right)^{n/2}.}

Thus we have theBabenko–Beckner inequality that

Ffq(p1/p/q1/q)n/2fp.{\displaystyle \|{\mathcal {F}}f\|_{q}\leq \left(p^{1/p}/q^{1/q}\right)^{n/2}\|f\|_{p}.}

To write this out explicitly, (in the case of one dimension,) if the Fourier transform is normalized so that

g(y)Re2πixyf(x)dx and f(x)Re2πixyg(y)dy,{\displaystyle g(y)\approx \int _{\mathbb {R} }e^{-2\pi ixy}f(x)\,dx{\text{ and }}f(x)\approx \int _{\mathbb {R} }e^{2\pi ixy}g(y)\,dy,}

then we have

(R|g(y)|qdy)1/q(p1/p/q1/q)1/2(R|f(x)|pdx)1/p{\displaystyle \left(\int _{\mathbb {R} }|g(y)|^{q}\,dy\right)^{1/q}\leq \left(p^{1/p}/q^{1/q}\right)^{1/2}\left(\int _{\mathbb {R} }|f(x)|^{p}\,dx\right)^{1/p}}

or more simply

(qR|g(y)|qdy)1/q(pR|f(x)|pdx)1/p.{\displaystyle \left({\sqrt {q}}\int _{\mathbb {R} }|g(y)|^{q}\,dy\right)^{1/q}\leq \left({\sqrt {p}}\int _{\mathbb {R} }|f(x)|^{p}\,dx\right)^{1/p}.}

Main ideas of proof

[edit]

Throughout this sketch of a proof, let

1<p2,1p+1q=1,andω=1p=ip1.{\displaystyle 1<p\leq 2,\quad {\frac {1}{p}}+{\frac {1}{q}}=1,\quad {\text{and}}\quad \omega ={\sqrt {1-p}}=i{\sqrt {p-1}}.}

(Except forq, we will more or less follow the notation of Beckner.)

The two-point lemma

[edit]

Letdν(x){\displaystyle d\nu (x)} be the discrete measure with weight1/2{\displaystyle 1/2} at the pointsx=±1.{\displaystyle x=\pm 1.} Then the operator

C:a+bxa+ωbx{\displaystyle C:a+bx\rightarrow a+\omega bx}

mapsLp(dν){\displaystyle L^{p}(d\nu )} toLq(dν){\displaystyle L^{q}(d\nu )} with norm 1; that is,

[|a+ωbx|qdν(x)]1/q[|a+bx|pdν(x)]1/p,{\displaystyle \left[\int |a+\omega bx|^{q}d\nu (x)\right]^{1/q}\leq \left[\int |a+bx|^{p}d\nu (x)\right]^{1/p},}

or more explicitly,

[|a+ωb|q+|aωb|q2]1/q[|a+b|p+|ab|p2]1/p{\displaystyle \left[{\frac {|a+\omega b|^{q}+|a-\omega b|^{q}}{2}}\right]^{1/q}\leq \left[{\frac {|a+b|^{p}+|a-b|^{p}}{2}}\right]^{1/p}}

for any complexa,b. (See Beckner's paper for the proof of his "two-point lemma".)

A sequence of Bernoulli trials

[edit]

The measuredν{\displaystyle d\nu } that was introduced above is actually a fairBernoulli trial with mean 0 and variance 1. Consider the sum of a sequence ofn such Bernoulli trials, independent and normalized so that the standard deviation remains 1. We obtain the measuredνn(x){\displaystyle d\nu _{n}(x)} which is then-fold convolution ofdν(nx){\displaystyle d\nu ({\sqrt {n}}x)} with itself. The next step is to extend the operatorC defined on the two-point space above to an operator defined on the (n + 1)-point space ofdνn(x){\displaystyle d\nu _{n}(x)} with respect to theelementary symmetric polynomials.

Convergence to standard normal distribution

[edit]

The sequencedνn(x){\displaystyle d\nu _{n}(x)} converges weakly to the standardnormal probability distributiondμ(x)=12πex2/2dx{\displaystyle d\mu (x)={\frac {1}{\sqrt {2\pi }}}e^{-x^{2}/2}\,dx} with respect to functions of polynomial growth. In the limit, the extension of the operatorC above in terms of the elementary symmetric polynomials with respect to the measuredνn(x){\displaystyle d\nu _{n}(x)} is expressed as an operatorT in terms of theHermite polynomials with respect to the standard normal distribution. These Hermite functions are the eigenfunctions of the Fourier transform, and the (qp)-norm of the Fourier transform is obtained as a result after some renormalization.

See also

[edit]

References

[edit]
  1. ^Iwo Bialynicki-Birula.Formulation of the uncertainty relations in terms of the Renyi entropies.arXiv:quant-ph/0608116v2
  2. ^K.I. Babenko.An inequality in the theory of Fourier integrals. Izv. Akad. Nauk SSSR, Ser. Mat.25 (1961) pp. 531–542 English transl., Amer. Math. Soc. Transl. (2)44, pp. 115–128
  3. ^W. Beckner,Inequalities in Fourier analysis. Annals of Mathematics, Vol. 102, No. 6 (1975) pp. 159–182.
Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Babenko–Beckner_inequality&oldid=1285635496"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp