Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Automated emergency braking system

From Wikipedia, the free encyclopedia
(Redirected fromAutonomous braking)
Vehicle safety technology
Schematic of an advanced emergency braking system

TheWorld Forum for Harmonization of Vehicle Regulations defineAEBS (alsoautomated emergency braking in some jurisdictions).[clarification needed]UN ECE regulation 131 requires a system which can automatically detect a potential forward collision and activate the vehicle braking system to decelerate a vehicle with the purpose of avoiding or mitigating a collision.[1] UN ECE regulation 152 says deceleration has to be at least 5 m/s².[2]

Once an impending collision is detected, these systems provide a warning to the driver. When the collision becomes imminent, they can take action autonomously without any driver input (by braking or steering or both). Collision avoidance by braking is appropriate at low vehicle speeds (e.g. below 50 km/h (31 mph)), while collision avoidance by steering may be more appropriate at higher vehicle speeds if lanes are clear.[3] Cars with collision avoidance may also be equipped withadaptive cruise control, using the same forward-looking sensors.

AEB differs from forward collision warning: FCW alerts the driver with a warning but does not by itself brake the vehicle.[4]

According to Euro NCAP, AEB has three characteristics:[5]

  • Autonomous: the system acts independently of the driver to avoid or mitigate the accident.
  • Emergency: the system will intervene only in a critical situation.
  • Braking: the system tries to avoid the accident by applying the brakes.

Time-to-collision could be a way to choose which avoidance method (braking or steering) is most appropriate.[6]

A collision avoidance system by steering is a new concept. It is considered by some research projects.[6]Collision avoidance system by steering has some limitations: over-dependence on lane markings, sensor limitations, and interaction between driver and system.[7]

History

[edit]

Early approaches and forward collision avoidance system

[edit]

Early warning systems were attempted as early as the late 1950s. An example isCadillac, which developed a prototype vehicle named theCadillac Cyclone which used the new radar technology to detect objects in front of the car with the radar sensors mounted inside "nose cones". It was deemed too costly to manufacture.

The first modern forward collision avoidance system was patented in 1990 by William L. Kelley.[8]

The second modern forward collision avoidance system was demonstrated in 1995 by a team of scientists and engineers atHughes Research Laboratories (HRL) inMalibu, California. The project was funded byDelco Electronics and was led by HRL physicist Ross D. Olney. The technology was marketed asForewarn. The system was radar-based  – a technology that was readily available atHughes Electronics, but not commercially elsewhere. A small custom fabricated radar antenna was developed specifically for this automotive application at 77  GHz.[9]

The first production laser adaptive cruise control on a Toyota vehicle was introduced on theCelsior model (Japan only) in August 1997.

Commercial and regulatory development

[edit]

In 2008, AEB was introduced in the British market.[10]

Between 2010 and 2014,Euro NCAP rewarded various constructors whose system had AEB features.

Euro NCAP rewards
MakerYearSystem
BMW2014BMW Pedestrian Warning with City Brake Activation
FIAT2013FIAT City Brake Control
Mitsubishi2013Mitsubishi Forward Collision Mitigation
Skoda2013Skoda Front Assistant
Audi2012Audi Pre Sense Front
Audi2012Audi Pre Sense Front Plus
VW2012Volkswagen Front Assist
Ford2011Ford Active City Stop
Ford2011Ford Forward Alert
Mercedes-Benz2011Mercedes-Benz Collision Prevention Assist
VW2011Volkswagen City Emergency Brake
Honda2010Honda Collision Mitigation Braking System™ (CMBS™)
Mercedes-Benz2010Mercedes-Benz PRE-SAFE® Brake
Volvo2010Volvo City Safety

In the early-2000s, the U.S.National Highway Traffic Safety Administration (NHTSA) studied whether to make frontal collision warning systems andlane departure warning systems mandatory.[11] In 2011, the European Commission investigated the stimulation of "collision mitigation by braking" systems.[12] Mandatory fitting (extra cost option) of Advanced Emergency Braking Systems in commercial vehicles was scheduled to be implemented on 1 November 2013 for new vehicle types and on 1 November 2015 for all new vehicles in the European Union.[13] According to the "impact assessment",[14] this could prevent around 5,000 fatalities and 50,000 serious injuries per year across the EU.

In March 2016, theNational Highway Traffic Safety Administration (NHTSA) and theInsurance Institute for Highway Safety announced the manufacturers of 99% of U.S. automobiles had agreed to include automatic emergency braking systems as standard on virtually all new cars sold in the U.S. by 2022.[15] In Europe, there was a related agreement about an AEBS or AEB in 2012.[16]United Nations Economic Commission for Europe (UNECE) has announced that this kind of system will become mandatory for new heavy vehicles starting in 2015.[17] AEBS is regulated by UNECE regulation 131.[18] NHTSA projected that the ensuing accelerated rollout of automatic emergency braking would prevent an estimated 28,000 collisions and 12,000 injuries.[15]

In 2016, 40% of US car model have AEB as an option.[19]

As of January 2017[update], in the United Kingdom, an estimated 1,586,103 vehicles had AEB. This makes AEB available in 4.3% of the British vehicle fleet.[10]

As of 2021,Consumer Reports shows a rise in automakers making city-speed AEB standard. In 2021, six automakers included AEB on all models, up from two in 2020, indicating increased customer demand for this safety feature.[20]

Australia
This graph was using thelegacy Graph extension, which is no longer supported. It needs to be converted to thenew Chart extension.
AEB shares in Australia (first 100 car models)[21]

In April 2020 AEB is:

  • standard on 66% of new light vehicle models (passenger cars, SUVs and light commercial vehicles) sold in Australia,
  • 10% on higher grade variants only (AEB not available on base variant)
  • 6% as option
  • 16% have no form of AEB[22]
United States

Since 2015, the NHTSA has recommended AEB for vehicles. As of 2021[update], it is not mandatory in the US vehicles. However, in 2016, the NHTSA convinced automobile manufacturers to include AEB in 99% of new cars car sold in the US by 1 September 2022.[23]

On 9 June 2021, in Phoenix, USA, a heavy truck going too fast for traffic conditions crashed with seven other vehicles on a motorway,killing four people and hurting nine.[23] Two days later, US National Transportation Safety Board, prepare a nine-person team to investigate this crash, and to assess whether automatic emergency braking in the truck would have helped to mitigate or prevent the crash.[23]

Percent of US vehicles with AEB produced 1 September 2017 to 31 August 2018
(2018 model year)[24]
Percent of vehicles produced Sept. 1 to Aug. 31 with AEB
(2019 model year)[20]
Percent of vehicles produced Sept. 1 to Aug. 31 with AEB

(2020 model year)[20]

Percent of 2021 models with standard AEB

(2021 model year)[20]

As reported by manufacturer for light-duty vehicles 3,850 kg (8,500 lb) or less gross vehicle weightAs reported by manufacturer for light-duty vehicles weighing 3,850 kg (8,500 lb) or lessAs reported by manufacturer for light-duty vehicles weighing 3,850 kg (8,500 lb) or lessAs compiled by Consumer Reports
Tesla100100100100
Mercedes-Benz96999794
Volvo93100100100
Toyota/Lexus909297100
Audi87999983
Nissan/Infiniti78868282
Volkswagen69929889
Honda/Acura61869486
Mazda618096100
Subaru57849957
BMW49849994
Maserati/Alfa Romeo27484833
General Motors24294750
Hyundai/Genesis18789693
Kia13597550
Fiat Chrysler10101420
Porsche8385550
Ford/Lincoln6659183
Mitsubishi6539100
Jaguar Land Rover000100

In 2019, 66% of autobrake systems evaluate by theIIHS in 2019 models earn the highest rating of superior for front crash prevention.[25]

Now, the technology is common across all makes and models as well as price classes. By an agreement between automakers and the National Highway Traffic Safety Administration (NHTSA), by September 1, 2022, nearly all new vehicles sold in the United States will have the technology as standard equipment.

— JD Power[26]

Japan

In 2017, AEB is one of the most popular forms of ADAS in Japan,in Japan more than 40% of newly manufactured vehicles equipped with some type of ADAS had AEB.[27]

In 2018, 84.6% of cars had a kind of AEB in Japan, but the certification goal was not met by each of them.[28]

The Japanese government will make its domestic carmakers fit all new and remodeled passenger cars with automatic emergency braking (AEB) from November 2021 amid a rise in the number of traffic accidents involving older motorists.Models already on the market will be required to be equipped with such systems from December 2025. For imports into Japan made by overseas marques, new vehicles will be required to be equipped with AEB from about June 2024 and for existing models from about June 2026.

— autofile «Japan to make automatic-emergency braking mandatory» 18 December 2019.[29]

As a mandatory feature

[edit]

From the fiscal year 2021, in Japan, all new cars should have automatic braking systems to prevent accidents, including with a car or pedestrian but not with cyclists, at speeds defined by three international regulations.[28]

In the European Union, advanced emergency-braking system is required by law on new vehicle models from May 2022, and all new vehicles sold by May 2024.[30]

In India, autonomous emergency braking system (AEB) could become mandatory on new cars by 2022.[31]

In the United States, automakers voluntary committed to releasing automatic emergency braking as a standard feature on all new cars and trucks starting in 2022, to provide AEB three years earlier than through a regulatory process.[32] AEB is set to be mandatory in cars and light trucks by September 2029.[33]

In Australia where AEB is not yet mandatory, the federal government has suggested in a Regulation Impact Statement (RIS) that car-to-car and pedestrian AEB should be standard on all new models launched from July 2022 and all new vehicles sold from July 2024 like in the European Union.[22]AEB systems are required on all newly introduced vehicle models from March 2023, and all models on sale in Australia from March 2025.[34]

Legal changes applicable from 2025

[edit]

For HGVs and buses, new UNECE standards have been defined to improve AEB.From 2025, in the EU, those new standards will apply to new types of vehicle.[35]

Those changes were raised after crash inquiries which found some lorry drivers regularly switch off their AEB systems to drive closer to the vehicle in front. The regulation change will limit system deactivation to 15 minutes with automatic re-engagement after 15 minutes.[35]

Benefits and limitations

[edit]

Benefits

[edit]

A 2012 study[36] by the Insurance Institute for Highway Safety examined how particular features of crash-avoidance systems affected the number of claims under various forms of insurance coverage. The findings indicate that two crash-avoidance features provide the biggest benefits: (a)autonomous braking that would brake on its own, if the driver does not, to avoid a forward collision, and (b)adaptive headlights that would shift the headlights in the direction the driver steers. They found lane departure systems to be not helpful, and perhaps harmful, at the circa 2012 stage of development. A 2015 Insurance Institute for Highway Safety study found forward collision warning and automatic braking systems reducedrear collisions.[37]

A 2015 study based on European and Australasian data suggests the AEB can decrease rear-end collisions by 38%.[38]

In the2016 Berlin truck attack, the vehicle used was brought to a stop by its automatic braking system.[39] Collision avoidance features are rapidly making their way into the new vehicle fleet. In a study of police-reported crashes, automatic emergency braking was found to reduce the incidence of rear-end crashes by 39 percent.[40] A 2012 study suggests that if all cars feature the system, it will reduce accidents by up to 27 percent and save up to 8,000 lives per year on European roads.[41][42]

A 2016 US study on trucks, considering 6,000 CAS activations from over 3 million miles and 110,000 hours driving performed with year 2013 technology, find that CAS activations were the result of lead vehicle actions, such as braking, turning, switching lanes, or merging.[43]

In the UK and the US, third-party damages and costs have decreased by 10% and 40% according to some insurances.[4]

Efficiency varies depending on analysis, according to the European Commission:[44]

  • 38% drop in accidents according to Fildes, 2015
  • 9%-20% drop in collision according to Volvo
  • 44% drop according to Ciccino

In April 2019, IIHS/HLDI considered real-world benefits of crash avoidance technologies, based on rates of police-reported crashes and insurance claims. Forward collision warning plus autobrake is associated with a 50% decrease in front to rear crashes and a 56% decrease in front to rear crashes with injuries, while forward collision warning alone is associated with only a 27% decrease in front to rear crashes and an only 20% decrease in front to rear crashes with injuries. The rear automatic braking is considered to have generated a 78% decrease in backing crashes (when combined with the rearview camera and parking sensor). However, repair costs with this equipment are an average ofUS$109 higher due to the sensors being in areas prone to damage.[45]

In Australia, AEB has been found to reduce police-reported crashes by 55 percent, rear-end crashes by 40 percent, and vehicle occupant trauma by 28 percent.[22]

A 2020 Italian study suggests AEB reduces rear-end collision by 45% based on data from event data recorders in a sample of 1.5 million vehicles in 2017 and 1.8 million in 2018, for recent vehicles.[46]

It has been estimated that ALKS could help to avoid 47,000 serious accidents and save 3,900 lives over the first decade in the United Kingdom.[citation needed]

Limitations and safety issues

[edit]

ANTSB communication suggests that some vehicle collision avoidance assist systems are not able to detect damagedcrash attenuators. Therefore the vehicle may drive into the crash attenuator. The NTSB considers such a feature would be a must-have for safety with partially automated vehicles to detect potential hazards and warn of potential hazards to drivers.[47]

Inclement weather such as heavy rain, snow, or fog may temporarily inhibit the effectiveness of the systems.

In Japan, there were 72 car-reported accidents in 2017, 101 in 2018, and 80 between January and September 2019 caused by drivers placing too much confidence in automatic brakes, with 18 of them resulting in injuries or death.[48]

Unnecessary AEB

[edit]

Unnecessary AEB might trigger in situations such as shadows on the road, cars parked or metal road signs on the side of the middle of a curve, steep driveways.[26]

Features

[edit]

AEB systems aim to detect possible collisions with the car in front.[49] This is performed using sensors to detect and classify things in front of the vehicle, a system to interpret the data from the sensors, and a braking system which can work autonomously.[50]

Some cars may implementlane departure warning systems.[51]

Pedestrian detection

[edit]

Since 2004, Honda has developed anight vision system that highlights pedestrians in front of the vehicle by alerting the driver with an audible chime and visually displaying them via HUD. Honda's system only works in temperatures below 30 degrees Celsius (86 Fahrenheit). This system first appeared on theHonda Legend.[52]

To assist in pedestrian safety as well as driver safety, Volvo implemented apedestrian airbag in theVolvo V40, introduced in 2012.Many more manufacturers are developingPedestrian crash avoidance mitigation (PCAM) systems.

In the United States, the IIHS considers:

AEB with pedestrian detection was associated with significant reductions of 25%-27% in pedestrian crash risk and 29%-30% in pedestrian injury crash risk. However, there was not evidence that that the system was effective in dark conditions without street lighting, at speed limits of 50 mph or greater, or while the AEB- equipped vehicle was turning.

[53]

ANCAP reports

[edit]

Since 2018, the ANCAP provides AEB rating and tests AEB features.[54]

The ANCAP report in its adult occupant protection section contains AEB rating taking into account AEB City from 10 to 50  km/h.

The ANCAP report in its vulnerable user protection section contains AEB rating taking into account both AEB and FCW for pedestrian and cyclists, with various speeds named "Operational from" (for instance 10 to 80  km/h) in the reports:

  • For pedestrians in day and night: adult crossing, a child running, and an adult walking along.
  • For cyclists in the day only: cyclist crossing, a cyclist traveling along.

The ANCAP report in its safety assist section contains AEB rating taking into account the AEB interurban with various speeds named "Operational from" (for instance 10 to 180  km/h):

  • HMI performance
  • FCW (stationary and slower-moving car)
  • AEB interurban (car braking lightly, car braking heavily, driving toward slower-moving car)

Reverse automatic braking

[edit]

In the US by 2017, 5% of cars were capable of reverse automatic braking. This feature allows autonomous braking of the vehicle while working in the reverse direction, to avoid a reverse collision. Those systems are assessed by IIHS.[55]

See also

[edit]

References

[edit]
  1. ^"Uniform provisions concerning the approval of motor vehicles with regard to the Advanced Emergency Braking Systems (AEBS) - Addendum: 130 - Regulation: 131"(PDF). United Nations. 27 February 2014. Retrieved3 November 2019.
  2. ^"Uniform provisions concerning the approval of motor vehicles with regard to the Advanced Emergency Braking System (AEBS) for M1 and N1 vehicles"(PDF). United Nations Economic Commission for Europe. 4 February 2020. p. 8. Retrieved31 July 2020.
  3. ^Kanarachos, Stratis (2009)."A new method for computing optimum obstacle avoidance steering manoeuvres of vehicles".International Journal of Vehicle Autonomous Systems.7 (1) 27968:73–95.doi:10.1504/IJVAS.2009.027968. Retrieved29 July 2015.
  4. ^ab"Autonomous Emergency Braking (AEB) Frequently Asked Questions"(PDF). UK: Thatcham Research. Archived fromthe original(PDF) on 1 May 2018.
  5. ^"Autonomous Emergency Braking". Euro NCAP. Retrieved8 June 2019.
  6. ^abHayashi, Ryuzo; Chatporntanadul, Puwadech; Nagai, Masao (4 September 2013).Improvement of Trajectory Tracking Performance in Autonomous Collision Avoidance by Steering. 7th IFAC Symposium on Advances in Automotive Control.IFAC Proceedings Volumes. Vol. 46, no. 21. Tokyo. pp. 410–415.doi:10.3182/20130904-4-JP-2042.00104.
  7. ^"Improved Impact of Collision Avoidance by Steering Technology on Real Life Safety".Vinnova. Stockholm, Sweden. Retrieved3 November 2019.
  8. ^US 4926171, Kelley, William L., "Collision predicting and avoidance device for moving vehicles", published 15 May 1990 
  9. ^Olney, R.D.; et al. (November 1995), "Collision Warning System Technology",Intelligent Transport Systems World Congress, Yokohama, Japan
  10. ^abSari, Zahra; Brookes, David; Avery, Matthew (5 June 2017).AEB Performance in the UK; A Decade of Development. 25th International Technical Conference on the Enhanced Safety of Vehicles. US: Transportation Research Board. Retrieved8 June 2019.
  11. ^"Forward Collision Warning Requirements Project Final Report - Task 1"(PDF). National Highway Traffic Safety Administration. January 2003. Archived from the original on 23 March 2022. Retrieved29 July 2015.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  12. ^"Written question – Rear-end traffic collisions in the European Union - E-011477/2011".europa.eu. Retrieved25 January 2015.
  13. ^"Answer to a written question - Rear-end traffic collisions in the European Union - E-011477/2011".europa.eu. Retrieved25 January 2015.
  14. ^"Annex to the proposal for a regulation of the European Parliament and of the Council concerning type-approval requirements for the general safety of motor vehicles - Impact Assessment"(PDF).Commission of the European Communities. 23 May 2008. Archived fromthe original(PDF) on 23 June 2015. Retrieved31 March 2016.
  15. ^ab"U.S. DOT and IIHS announce the historic commitment of 20 automakers to make automatic emergency braking standard on new vehicles". U.S. Department of Transportation National Highway Traffic Safety Administration. 17 March 2016. Retrieved17 March 2016.
  16. ^"Automakers agree to make auto braking a standard by 2022". 20 March 2016.
  17. ^"UNECE works on new standards to increase the safety of trucks and coaches".
  18. ^"Uniform provisions concerning the approval of motor vehicles about the Advanced Emergency Braking Systems (AEBS)"(PDF). United Nations. 27 February 2014. Retrieved21 October 2019.
  19. ^Golson, Jordan (27 January 2016)."Rear-end crashes go way down when cars can brake themselves".The Verge. Retrieved26 May 2018.
  20. ^abcdBy."10 automakers fulfill automatic emergency braking pledge ahead of schedule".IIHS-HLDI crash testing and highway safety. Retrieved3 August 2024.
  21. ^"Standard inclusion of autonomous emergency braking increases ten-fold". Australia: ANCAP. 13 June 2018. Retrieved24 March 2019.
  22. ^abc"Government proposes mandatory AEB".Motoring. Australia. 16 October 2020. Retrieved1 May 2021.
  23. ^abc"U.S. to seek automated braking requirement for heavy trucks".Honolulu Star-Advertiser. US. 11 June 2021. Retrieved15 July 2021.
  24. ^"10 automakers equipped most of their 2018 vehicles with automatic emergency braking". US: NHTSA. 13 March 2019. Retrieved28 March 2019.
  25. ^"Autobrake is good, but it could be better". US: Insurance Institute for Highway Safety. 21 February 2019. Retrieved15 June 2019.
  26. ^abWardlaw, Christian (5 August 2021)."What is Automatic Emergency Braking?". US: JD Power. Retrieved25 February 2022.
  27. ^Trusting Other Vehicles' Automatic Emergency BrakingDecreases Self-Protective DrivingYasunori Kinosada‍ ‍, Shizuoka Institute of Science and Technology, Japan,Takashi Kobayashi, and Kazumitsu Shinohara, Osaka University, Japan
  28. ^ab"AEB to be Required on New Cars in Japan". 2 December 2019.
  29. ^"Japan to make automatic-emergency braking mandatory".
  30. ^"Parliament approves EU rules requiring life-saving technologies in vehicles | News | European Parliament". Europarl.europa.eu. 16 April 2019. Retrieved31 August 2020.
  31. ^Dash, Dipak K (7 September 2018)."Soon, all vehicles to have 'brakes with brains'".Times of India. Retrieved8 June 2019.
  32. ^"North America Publishes Report on recent Automaker Automatic Emergency Braking Commitment". JATO. 9 June 2016. Retrieved31 August 2020.
  33. ^"Feds Mandate Automated Emergency Braking by 2029".Car and Driver. 2 May 2024.
  34. ^Guthrie, Susannah (28 July 2022)."Opinion: Safety should never be an 'optional extra' on a new car".Drive. Australia. Retrieved1 August 2022.
  35. ^ab"ETSC welcomes higher standards for automated emergency braking systems on HGVS | ETSC". 8 February 2022.
  36. ^"Crash avoidance features cut insurance claims". US: Insurance Institute for Highway Safety. Archived fromthe original on 30 November 2012. Retrieved4 April 2015.
  37. ^Beene, Ryan (28 January 2016)."Automatic braking reduces rear-end crashes, IIHS study finds".Automotive News. Retrieved10 March 2016.
  38. ^"New study confirms real-world safety benefits of autonomous emergency braking". European Transport Safety Council. 11 July 2015. Retrieved8 June 2019.
  39. ^"Automatic brakes stopped Berlin truck during Christmas market attack".Deutsche Welle. 28 December 2016.
  40. ^Cicchino, Jessica (2016)."Effectiveness of Forward Collision Warning Systems with and without Autonomous Emergency Braking in Reducing Police-Reported Crash Rates". Insurance Institute for Highway Safety. Archived fromthe original on 30 April 2016.
  41. ^euroncapcom (13 June 2012)."Euro NCAP - Autonomous Emergency Braking AEB".Archived from the original on 21 December 2021 – via YouTube.
  42. ^"New EU legislation requires cars to include autonomous braking system". 5 August 2012.
  43. ^Kilcarr, Sean (16 June 2016)."NHTSA study: Collision avoidance systems can reduce crashes".Fleet Owner. Retrieved11 April 2020.
  44. ^"Advanced driver assistance systems 2018"(PDF). European Road Safety Observatory. Retrieved8 June 2019.
  45. ^"Real-word benefits of crash avoidance technologies"(PDF). US: Insurance Institute for Highway Safety. April 2019. Retrieved15 June 2019.
  46. ^"AEB systems cut rear-end collisions by 45%". European Transport Safety Council. 14 October 2020. Retrieved1 May 2021.
  47. ^"Collision Between a Sport Utility Vehicle Operating With Partial Driving Automation and a Crash Attenuator"(PDF). California, US:NTSB. 23 March 2018. HWY18FH011. Archived from the original on 27 January 2022. Retrieved10 April 2020.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  48. ^"Japan to make automatic-emergency braking mandatory". New Zealand. 18 December 2019. Retrieved13 February 2022.
  49. ^"Car Safety Feature - Auto Emergency Braking (AEB)".Howsafeisyourcar.com.au. Australia. Retrieved8 June 2019.
  50. ^Anderson, Robert; Doecke, Samuel; Macken, James."Potential Benefits of Autonomous Emergency Braking Based on In-depth Crash Reconstruction and Simulation"(PDF).National Highway Traffic Safety Administration.S2CID 8767744. Paper Number 13-0152. Archived fromthe original(PDF) on 27 December 2016.
  51. ^Umar Zakir Abdul, Hamid; et al. (2016)."Current Collision Mitigation Technologies for Advanced Driver Assistance Systems–A Survey".PERINTIS eJournal.6 (2). Retrieved14 June 2017.
  52. ^"Safety - Honda's Intelligent Night Vision system".Automotive Engineer PLUS. October 2004. Archived from the original on 8 August 2008.
  53. ^Cicchino, Jessica B. (May 2022)."Effects of automatic emergency braking systems on pedestrian crash risk".Accident Analysis and Prevention.172 106686.doi:10.1016/j.aap.2022.106686.PMID 35580401.S2CID 248805604. Retrieved10 August 2022.
  54. ^White, Tom (26 February 2018)."AEB or auto emergency braking: Not all systems are created equal".CarsGuide. Australia. Retrieved8 June 2019.
  55. ^Krok, Andrew (22 February 2018)."IIHS begins testing reverse automatic braking".Roadshow. US: CNN. Retrieved8 June 2019.
Self-driving cars, self-driving vehicles and enabling technologies
Overview and
context
SAE Levels
Human driver monitors
the driving environment
(Levels 0,1,2)
System monitors
the driving environment
(Levels 3,4,5)
Vehicles
Cars
Buses and commercial
vehicles
Regulation
Liability
Enabling
technologies
Organizations,
Projects &
People
Organizations,
projects
and events
People

Retrieved from "https://en.wikipedia.org/w/index.php?title=Automated_emergency_braking_system&oldid=1315258246"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp