Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Automorphic number

From Wikipedia, the free encyclopedia
Number whose square ends in the same digits
This article includes alist of references,related reading, orexternal links,but its sources remain unclear because it lacksinline citations. Please helpimprove this article byintroducing more precise citations.(March 2013) (Learn how and when to remove this message)

Inmathematics, anautomorphic number (sometimes referred to as acircular number) is anatural number in a givennumber baseb{\displaystyle b} whosesquare "ends" in the same digits as the number itself.

Definition and properties

[edit]

Given a number baseb{\displaystyle b}, a natural numbern{\displaystyle n} withk{\displaystyle k} digits is anautomorphic number ifn{\displaystyle n} is afixed point of thepolynomial functionf(x)=x2{\displaystyle f(x)=x^{2}} overZ/bkZ{\displaystyle \mathbb {Z} /b^{k}\mathbb {Z} }, thering ofintegers modulobk{\displaystyle b^{k}}. As theinverse limit ofZ/bkZ{\displaystyle \mathbb {Z} /b^{k}\mathbb {Z} } isZb{\displaystyle \mathbb {Z} _{b}}, the ring ofb{\displaystyle b}-adic integers, automorphic numbers are used to find the numerical representations of the fixed points off(x)=x2{\displaystyle f(x)=x^{2}} overZb{\displaystyle \mathbb {Z} _{b}}.

For example, withb=10{\displaystyle b=10}, there are four 10-adic fixed points off(x)=x2{\displaystyle f(x)=x^{2}}, the last 10 digits of which are:

0000000000{\displaystyle \ldots 0000000000}
0000000001{\displaystyle \ldots 0000000001}
8212890625{\displaystyle \ldots 8212890625} (sequenceA018247 in theOEIS)
1787109376{\displaystyle \ldots 1787109376} (sequenceA018248 in theOEIS)

Thus, the automorphic numbers inbase 10 are 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, 18212890625, 81787109376, 918212890625, 9918212890625, 40081787109376, 59918212890625, ... (sequenceA003226 in theOEIS).

A fixed point off(x){\displaystyle f(x)} is azero of the functiong(x)=f(x)x{\displaystyle g(x)=f(x)-x}. In the ring of integers modulob{\displaystyle b}, there are2ω(b){\displaystyle 2^{\omega (b)}} zeroes tog(x)=x2x{\displaystyle g(x)=x^{2}-x}, where theprime omega functionω(b){\displaystyle \omega (b)} is the number of distinctprime factors inb{\displaystyle b}. An elementx{\displaystyle x} inZ/bZ{\displaystyle \mathbb {Z} /b\mathbb {Z} } is a zero ofg(x)=x2x{\displaystyle g(x)=x^{2}-x}if and only ifx0modpvp(b){\displaystyle x\equiv 0{\bmod {p}}^{v_{p}(b)}} orx1modpvp(b){\displaystyle x\equiv 1{\bmod {p}}^{v_{p}(b)}} for allp|b{\displaystyle p|b}. Since there are two possible values in{0,1}{\displaystyle \lbrace 0,1\rbrace }, and there areω(b){\displaystyle \omega (b)} suchp|b{\displaystyle p|b}, there are2ω(b){\displaystyle 2^{\omega (b)}} zeroes ofg(x)=x2x{\displaystyle g(x)=x^{2}-x}, and thus there are2ω(b){\displaystyle 2^{\omega (b)}} fixed points off(x)=x2{\displaystyle f(x)=x^{2}}. According toHensel's lemma, if there arek{\displaystyle k} zeroes or fixed points of a polynomial function modulob{\displaystyle b}, then there arek{\displaystyle k} corresponding zeroes or fixed points of the same function modulo any power ofb{\displaystyle b}, and this remains true in theinverse limit. Thus, in any given baseb{\displaystyle b} there are2ω(b){\displaystyle 2^{\omega (b)}}b{\displaystyle b}-adic fixed points off(x)=x2{\displaystyle f(x)=x^{2}}.

As 0 is always azero-divisor, 0 and 1 are always fixed points off(x)=x2{\displaystyle f(x)=x^{2}}, and 0 and 1 are automorphic numbers in every base. These solutions are calledtrivial automorphic numbers. Ifb{\displaystyle b} is aprime power, then the ring ofb{\displaystyle b}-adic numbers has no zero-divisors other than 0, so the only fixed points off(x)=x2{\displaystyle f(x)=x^{2}} are 0 and 1. As a result,nontrivial automorphic numbers, those other than 0 and 1, only exist when the baseb{\displaystyle b} has at least two distinct prime factors.

Automorphic numbers in baseb

[edit]

Allb{\displaystyle b}-adic numbers are represented in baseb{\displaystyle b}, using A−Z to represent digit values 10 to 35.

b{\displaystyle b}Prime factors ofb{\displaystyle b}Fixed points inZ/bZ{\displaystyle \mathbb {Z} /b\mathbb {Z} } off(x)=x2{\displaystyle f(x)=x^{2}}b{\displaystyle b}-adic fixed points off(x)=x2{\displaystyle f(x)=x^{2}}Automorphic numbers in baseb{\displaystyle b}
62, 30, 1, 3, 4

0000000000{\displaystyle \ldots 0000000000}

0000000001{\displaystyle \ldots 0000000001}

2221350213{\displaystyle \ldots 2221350213}

3334205344{\displaystyle \ldots 3334205344}

0, 1, 3, 4, 13, 44, 213, 344, 5344, 50213, 205344, 350213, 1350213, 4205344, 21350213, 34205344, 221350213, 334205344, 2221350213, 3334205344, ...

102, 50, 1, 5, 6

0000000000{\displaystyle \ldots 0000000000}

0000000001{\displaystyle \ldots 0000000001}

8212890625{\displaystyle \ldots 8212890625}

1787109376{\displaystyle \ldots 1787109376}

0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 1787109376, 8212890625, ...
122, 30, 1, 4, 9

0000000000{\displaystyle \ldots 0000000000}

0000000001{\displaystyle \ldots 0000000001}

21B61B3854{\displaystyle \ldots 21{\text{B}}61{\text{B}}3854}

9A05A08369{\displaystyle \ldots 9{\text{A}}05{\text{A}}08369}

0, 1, 4, 9, 54, 69, 369, 854, 3854, 8369, B3854, 1B3854, A08369, 5A08369, 61B3854, B61B3854, 1B61B3854, A05A08369, 21B61B3854, 9A05A08369, ...
142, 70, 1, 7, 8

0000000000{\displaystyle \ldots 0000000000}

0000000001{\displaystyle \ldots 0000000001}

7337AA0C37{\displaystyle \ldots 7337{\text{A}}{\text{A}}0{\text{C}}37}

6AA633D1A8{\displaystyle \ldots 6{\text{A}}{\text{A}}633{\text{D}}1{\text{A}}8}

0, 1, 7, 8, 37, A8, 1A8, C37, D1A8, 3D1A8, A0C37, 33D1A8, AA0C37, 633D1A8, 7AA0C37, 37AA0C37, A633D1A8, 337AA0C37, AA633D1A8, 6AA633D1A8, 7337AA0C37, ...
153, 50, 1, 6, 10

0000000000{\displaystyle \ldots 0000000000}

0000000001{\displaystyle \ldots 0000000001}

624D4BDA86{\displaystyle \ldots 624{\text{D}}4{\text{B}}{\text{D}}{\text{A}}86}

8CA1A3146A{\displaystyle \ldots 8{\text{C}}{\text{A}}1{\text{A}}3146{\text{A}}}

0, 1, 6, A, 6A, 86, 46A, A86, 146A, DA86, 3146A, BDA86, 4BDA86, A3146A, 1A3146A, D4BDA86, 4D4BDA86, A1A3146A, 24D4BDA86, CA1A3146A, 624D4BDA86, 8CA1A3146A, ...
182, 30, 1, 9, 10

...000000

...000001

...4E1249

...D3GFDA

202, 50, 1, 5, 16

...000000

...000001

...1AB6B5

...I98D8G

213, 70, 1, 7, 15

...000000

...000001

...86H7G7

...CE3D4F

222, 110, 1, 11, 12

...000000

...000001

...8D185B

...D8KDGC

242, 30, 1, 9, 16

...000000

...000001

...E4D0L9

...9JAN2G

262, 130, 1, 13, 14

...0000

...0001

...1G6D

...O9JE

282, 70, 1, 8, 21

...0000

...0001

...AAQ8

...HH1L

302, 3, 50, 1, 6, 10, 15, 16, 21, 25

...0000

...0001

...B2J6

...H13A

...1Q7F

...S3MG

...CSQL

...IRAP

333, 110, 1, 12, 22

...0000

...0001

...1KPM

...VC7C

342, 170, 1, 17, 18

...0000

...0001

...248H

...VTPI

355, 70, 1, 15, 21

...0000

...0001

...5MXL

...TC1F

362, 30, 1, 9, 28

...0000

...0001

...DN29

...MCXS

Extensions

[edit]

Automorphic numbers can be extended to any such polynomial function ofdegreen{\displaystyle n}f(x)=i=0naixi{\textstyle f(x)=\sum _{i=0}^{n}a_{i}x^{i}} withb-adic coefficientsai{\displaystyle a_{i}}. These generalised automorphic numbers form atree.

a-automorphic numbers

[edit]

Ana{\displaystyle a}-automorphic number occurs when the polynomial function isf(x)=ax2{\displaystyle f(x)=ax^{2}}

For example, withb=10{\displaystyle b=10} anda=2{\displaystyle a=2}, as there are two fixed points forf(x)=2x2{\displaystyle f(x)=2x^{2}} inZ/10Z{\displaystyle \mathbb {Z} /10\mathbb {Z} } (x=0{\displaystyle x=0} andx=8{\displaystyle x=8}), according toHensel's lemma there are two 10-adic fixed points forf(x)=2x2{\displaystyle f(x)=2x^{2}},

0000000000{\displaystyle \ldots 0000000000}
0893554688{\displaystyle \ldots 0893554688}

so the 2-automorphic numbers in base 10 are 0, 8, 88, 688, 4688...

Trimorphic numbers

[edit]

Atrimorphic number orspherical number occurs when the polynomial function isf(x)=x3{\displaystyle f(x)=x^{3}}.[1] All automorphic numbers are trimorphic. The termscircular andspherical were formerly used for the slightly different case of a number whose powers all have the same last digit as the number itself.[2]

For baseb=10{\displaystyle b=10}, the trimorphic numbers are:

0, 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999, 1249, 3751, 4375, 4999, 5001, 5625, 6249, 8751, 9375, 9376, 9999, ... (sequenceA033819 in theOEIS)

For baseb=12{\displaystyle b=12}, the trimorphic numbers are:

0, 1, 3, 4, 5, 7, 8, 9, B, 15, 47, 53, 54, 5B, 61, 68, 69, 75, A7, B3, BB, 115, 253, 368, 369, 4A7, 5BB, 601, 715, 853, 854, 969, AA7, BBB, 14A7, 2369, 3853, 3854, 4715, 5BBB, 6001, 74A7, 8368, 8369, 9853, A715, BBBB, ...

Programming example

[edit]
defhensels_lemma(polynomial_function,base:int,power:int)->list[int]:"""Hensel's lemma."""ifpower==0:return[0]ifpower>0:roots=hensels_lemma(polynomial_function,base,power-1)new_roots=[]forrootinroots:foriinrange(0,base):new_i=i*base**(power-1)+rootnew_root=polynomial_function(new_i)%pow(base,power)ifnew_root==0:new_roots.append(new_i)returnnew_rootsbase=10digits=10defautomorphic_polynomial(x:int)->int:returnx**2-xforiinrange(1,digits+1):print(hensels_lemma(automorphic_polynomial,base,i))

See also

[edit]

References

[edit]
  1. ^See Gérard Michon's article at
  2. ^"spherical number".Oxford English Dictionary (Online ed.).Oxford University Press. (Subscription orparticipating institution membership required.)

External links

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Automorphic_number&oldid=1262714141"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp