Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Atom interferometer

From Wikipedia, the free encyclopedia
Interferometer which uses the wave-like nature of atoms

Anatom interferometer is a type ofinterferometer that uses the wave-like nature of atoms in order to produce interference. In atom interferometers, the roles of matter and light are reversed compared to thelaser based interferometers, i.e. the beam splitter and mirrors are lasers while the source emitsmatter waves (the atoms) rather than light. In this sense, atom interferometers are the matter wave analog ofdouble-slit,Michelson-Morley, orMach-Zehnder interferometers typically used for light.[1] Atom interferometers measure the difference in phase acquired by atomic matter waves traversing different paths. Matter waves may be controlled and manipulated using systems of lasers.[2]: 420–1  Atom interferometers have been used in tests offundamental physics, including measurements of thegravitational constant, thefine-structure constant, anduniversality of free fall. Applied uses of atom interferometers include accelerometers, rotation sensors, andgravity gradiometers.[3]

Overview

[edit]

Interferometry splits a wave into a superposition along two different paths. A spatially dependent potential or a local interaction differentiates the paths, introducing a phase difference between waves. Atom interferometers usecenter of mass matter waves with shortde Broglie wavelength.[4][5] Experiments usingmolecules have been proposed to search for the limits of quantum mechanics by leveraging the molecules' shorter De Broglie wavelengths.[6]

History

[edit]

Interference of atommatter waves was first observed byImmanuel Estermann andOtto Stern in 1930, when a sodium (Na) beam was diffracted off a surface ofsodium chloride (NaCl).[7] The first modern atom interferometer reported was adouble-slit experiment with metastable helium atoms and a microfabricated double slit by O. Carnal andJürgen Mlynek in 1991,[8] and an interferometer using three microfabricated diffraction gratings and Na atoms in the group aroundDavid E. Pritchard at theMassachusetts Institute of Technology (MIT).[9] Shortly afterwards, an optical version of aRamsey spectrometer typically used in atomic clocks was recognized also as an atom interferometer at thePhysikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany.[10] The largest physical separation between the partial wave packets of atoms was achieved using laser cooling techniques and stimulated Raman transitions bySteven Chu and his coworkers inStanford University.[11]

In 1999, the diffraction of C60fullerenes by researchers from theUniversity of Vienna was reported.[12] Fullerenes are comparatively large and massive objects, having an atomic mass of about720 Da. Thede Broglie wavelength of the incident beam was about 2.5 pm, whereas the diameter of the molecule is about 1 nm, about 400 times larger. In 2012, these far-field diffraction experiments could be extended tophthalocyanine molecules and their heavier derivatives, which are composed of 58 and 114 atoms respectively. In these experiments the build-up of such interference patterns could be recorded in real time and with single molecule sensitivity.[13]

In 2003, the Vienna group also demonstrated the wave nature oftetraphenylporphyrin[14]—a flat biodye with an extension of about 2 nm and a mass of 614 Da. For this demonstration they employed a near-field Talbot–Lau interferometer.[15][16] In the same interferometer they also found interference fringes for C60F48, a fluorinatedbuckyball with a mass of about 1600 Da, composed of 108 atoms.[14] Large molecules are already so complex that they give experimental access to some aspects of the quantum-classical interface, i.e., to certaindecoherence mechanisms.[17][18] In 2011, the interference of molecules as heavy as 6910 Da could be demonstrated in a Kapitza–Dirac–Talbot–Lau interferometer.[19] In 2013, the interference of molecules beyond 10,000 Da has been demonstrated.[20]

The 2008 comprehensive review by Alexander D. Cronin, Jörg Schmiedmayer, andDavid E. Pritchard documents many new experimental approaches to atom interferometry.[21] More recently atom interferometers have begun moving out of laboratory conditions and have begun to address a variety of applications in real world environments.[22][23]

Interferometer types

[edit]
A compactmagneto-optical trap, the first step in generating an atom interferometer.

While the use of atoms offers easy access to higher frequencies (and thus accuracies) thanlight, atoms possess mass and move slower; thus they affected more noticeably bygravity compared to beams of light.[24] In some apparatuses, the atoms are ejected upwards and the interferometry takes place while the atoms are in flight, or while falling in free flight.[25] In other experiments gravitational effects by free acceleration are not negated; additional forces are used to compensate for gravity.[26][27] These guided systems in principle can provide arbitrary amounts of measurement time, providedquantum coherence is preserved.

The early atom interferometers deployed slits or wires for the beam splitters and mirrors. Later systems, especially the guided ones, used light forces for splitting and reflecting of the matter wave.[28]

Light pulse atom interferometer

[edit]

A prototypical technique for atom interferometry involves splitting, reflecting, and recombining atomic matter waves using pulses of light. This technique is also called the Kasevich-Chu atom interferometer, named after the authors of the 1991 paper.[29] This method employs counter-propagating beams of light that produce transitions between two quantumstates labeled|0{\displaystyle |0\rangle } and|1{\displaystyle |1\rangle }.[30] Both lasers are tuned off-resonance from the excited state by a frequency Δ to avoid resonantly exciting and heating the atoms.

In addition to changing the spin state of the atom, the counter-propagating Raman transition provides amomentum kickkeff=(k2k1){\displaystyle \hbar {\vec {k}}_{eff}=\hbar ({\vec {k}}_{2}-{\vec {k}}_{1})} to one of the components.[30] In a spin–momentum basis, a pulse of Raman light interacting with an atom will transition between|0,0{\displaystyle |0,0\rangle } and|1,keff{\displaystyle |1,\hbar {\vec {k}}_{eff}\rangle }. Applying aπ/2{\displaystyle \pi /2} pulse (seeRamsey interferometer) light toψ0=|0,0{\displaystyle \psi _{0}=|0,0\rangle } produces theentangled stateψ1=12(|0,0+|1,keff){\displaystyle \psi _{1}={\frac {1}{\sqrt {2}}}\left(|0,0\rangle +|1,\hbar {\vec {k}}_{eff}\rangle \right)}.

The interferometer is formed by three Raman pulses in aπ/2{\displaystyle \pi /2}π{\displaystyle \pi }π/2{\displaystyle \pi /2} configuration separated by a common non-interaction timeT{\displaystyle T}. This scheme is analogous to aMach–Zehnder interferometer for light, where the first pulse splits the matter wave to travel along two different trajectories, the second pulse reflects the packets back toward each other, and the final pulse recombines the matter wave. The measured state of the matter wave after the interferometer sequence depends on the total phase differenceΔφ{\displaystyle \Delta \varphi } accumulated along the two different trajectories, yielding a final probability of being in one of the states as[31]P=12(1Ccos(Δφ)),{\displaystyle P={\frac {1}{2}}\left(1-C\cos(\Delta \varphi )\right),}whereC{\displaystyle C} is the visibility or contrast of theinterferometer fringe. Since the matter wave is in free-fall with respect to gravity, the phase difference depends on thegravitational accelerationg{\displaystyle g} as[30]Δφ=keffg T2+ΔϕL,{\displaystyle \Delta \varphi ={\vec {k}}_{eff}\cdot {\vec {g}}~T^{2}+\Delta \phi _{L},}whereΔϕL{\displaystyle \Delta \phi _{L}} is any additional phase difference of the Raman laser beam arising between the light pulses.[32]

The sensitivity of the interferometer to gravitational or inertial forces depends on:

  • The space–time area enclosed by the interferometer, which increases for largerT{\displaystyle T}.[33]
  • The relative phase stability of the counter-propagating Raman beams.
  • The number of atoms in the cold, trapped ensemble that complete the interferometer. A larger fraction of participating atoms increasesC{\displaystyle C}. Due to theDoppler effect, atoms with finite temperature may not experience exactlyπ/2{\displaystyle \pi /2} orπ{\displaystyle \pi } Raman pulses.

Examples

[edit]
GroupYearAtomic speciesMethodMeasured effect(s)
Pritchard1991Na, Na2Nano-fabricatedgratingsPolarizability, index of refraction
Clauser1994KTalbot–Lau interferometer
Zeilinger1995ArStanding light wave diffraction gratings
Helmke
Bordé
1991Ramsey–BordéPolarizability,
Aharonov–Bohm effect: exp/theo0.99±0.022{\displaystyle 0.99\pm 0.022},
Sagnac effect 0.3 rad/s/{\displaystyle \surd }Hz
Chu1991
1998
Na

Cs

Kasevich–Chu interferometer
Light pulses Raman diffraction
Gravimeter:31010{\displaystyle 3\cdot 10^{-10}}
Fine-structure constant:α±1.5109{\displaystyle \alpha \pm 1.5\cdot 10^{-9}}
Kasevich1997
1998
CsLight pulses Raman diffractionGyroscope:2108{\displaystyle 2\cdot 10^{-8}}rad/s/{\displaystyle \surd }Hz,
Gradiometer:
BermanTalbot-Lau
Mueller2018CsRamsey-Bordé interferometerFine-structure constant:α±21010{\displaystyle \alpha \pm 2\cdot 10^{-10}}

Applications

[edit]

Gravitational physics

[edit]

A precise measurement ofgravitational redshift was made in 2009 by Holger Muller, Achim Peters, and Steven Chu. No violations of general relativity were found to7×10−9.[34]

In 2020, Peter Asenbaum, Chris Overstreet, Minjeong Kim, Joseph Curti, and Mark A. Kasevich used atom interferometry to test theprinciple of equivalence in general relativity. They found no violations to about10−12.[35][36]

The sensitivity of an atom interferometer to external influences generally improves as the matter wave's separation time increases.[34] High sensitivity free-fall interferometers hence require long drop distances. For example, the MAGIS-100 experiment atFermilab employs a 100 meter drop tower, aiming to detectgravitational waves and ultralightdark matter,[37] which is known to interact with regular matter only via gravity.

Space-based atom interferometers may be more sensitive to weak gravitational waves than terrestrial observatories such asLIGO.[38]

Inertial navigation

[edit]

Atomic interferometer gyroscopes (AIG) and atomic spin gyroscopes (ASG) use atomic interferometer to sense rotation or in the latter case, usesatomic spin to sense rotation with both having compact size, high precision, and the possibility of being made on a chip-scale.[39][40]

See also

[edit]

References

[edit]
  1. ^Cronin, Alexander D.; Schmiedmayer, Jörg; Pritchard, David E. (2009-07-28)."Optics and interferometry with atoms and molecules".Reviews of Modern Physics.81 (3):1051–1129.arXiv:0712.3703.Bibcode:2009RvMP...81.1051C.doi:10.1103/RevModPhys.81.1051.
  2. ^Hecht, Eugene (2017).Optics (5th ed.). Pearson.ISBN 978-0-133-97722-6.
  3. ^Stray, Ben; Lamb, Andrew; Kaushik, Aisha; Vovrosh, Jamie; Winch, Jonathan; Hayati, Farzad; Boddice, Daniel; Stabrawa, Artur; Niggebaum, Alexander; Langlois, Mehdi; Lien, Yu-Hung; Lellouch, Samuel; Roshanmanesh, Sanaz; Ridley, Kevin; de Villiers, Geoffrey; Brown, Gareth; Cross, Trevor; Tuckwell, George; Faramarzi, Asaad; Metje, Nicole; Bongs, Kai; Holynski, Michael (2020)."Quantum sensing for gravity cartography".Nature.602 (7898):590–594.doi:10.1038/s41586-021-04315-3.PMC 8866129.PMID 35197616.
  4. ^Cronin, A. D.; Schmiedmayer, J.; Pritchard, D. E. (2009). "Optics and interferometry with atoms and molecules".Rev. Mod. Phys.81 (3):1051–1129.arXiv:0712.3703.Bibcode:2009RvMP...81.1051C.doi:10.1103/RevModPhys.81.1051.S2CID 28009912.
  5. ^Adams, C. S.; Sigel, M.; Mlynek, J. (1994)."Atom Optics".Phys. Rep.240 (3):143–210.Bibcode:1994PhR...240..143A.doi:10.1016/0370-1573(94)90066-3.
  6. ^Hornberger, K.; et al. (2012). "Colloquium: Quantum interference of clusters and molecules".Rev. Mod. Phys.84 (1): 157.arXiv:1109.5937.Bibcode:2012RvMP...84..157H.doi:10.1103/revmodphys.84.157.S2CID 55687641.
  7. ^Estermann, I.;Stern, Otto (1930). "Beugung von Molekularstrahlen".Z. Phys.61 (1–2): 95.Bibcode:1930ZPhy...61...95E.doi:10.1007/bf01340293.S2CID 121757478.
  8. ^Carnal, O.; Mlynek, J. (1991)."Young's double-slit experiment with atoms: A simple atom interferometer".Phys. Rev. Lett.66 (21):2689–2692.Bibcode:1991PhRvL..66.2689C.doi:10.1103/physrevlett.66.2689.PMID 10043591.
  9. ^Keith, D.W.; Ekstrom, C.R.; Turchette, Q.A.; Pritchard, D.E. (1991)."An interferometer for atoms".Phys. Rev. Lett.66 (21):2693–2696.Bibcode:1991PhRvL..66.2693K.doi:10.1103/physrevlett.66.2693.PMID 10043592.S2CID 6559338.
  10. ^Riehle, F.; Th; Witte, A.; Helmcke, J.; Ch; Bordé, J. (1991). "Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer".Phys. Rev. Lett.67 (2):177–180.Bibcode:1991PhRvL..67..177R.doi:10.1103/physrevlett.67.177.PMID 10044514.
  11. ^Kasevich, M.; Chu, S. (1991). "Atomic interferometry using stimulated Raman transitions".Phys. Rev. Lett.67 (2):181–184.Bibcode:1991PhRvL..67..181K.doi:10.1103/physrevlett.67.181.PMID 10044515.S2CID 30845889.
  12. ^Arndt, Markus; O. Nairz;J. Voss-Andreae, C. Keller, G. van der Zouw,A. Zeilinger (14 October 1999). "Wave–particle duality of C60".Nature.401 (6754):680–682.Bibcode:1999Natur.401..680A.doi:10.1038/44348.PMID 18494170.S2CID 4424892.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^Juffmann, Thomas; et al. (25 March 2012). "Real-time single-molecule imaging of quantum interference".Nature Nanotechnology.7 (5):297–300.arXiv:1402.1867.Bibcode:2012NatNa...7..297J.doi:10.1038/nnano.2012.34.PMID 22447163.S2CID 5918772.
  14. ^abHackermüller, Lucia; Stefan Uttenthaler; Klaus Hornberger; Elisabeth Reiger; Björn Brezger; Anton Zeilinger; Markus Arndt (2003). "The wave nature of biomolecules and fluorofullerenes".Phys. Rev. Lett.91 (9) 090408.arXiv:quant-ph/0309016.Bibcode:2003PhRvL..91i0408H.doi:10.1103/PhysRevLett.91.090408.PMID 14525169.S2CID 13533517.
  15. ^Clauser, John F.; S. Li (1994). "Talbot von Lau interefometry with cold slow potassium atoms".Phys. Rev. A.49 (4): R2213–2217.Bibcode:1994PhRvA..49.2213C.doi:10.1103/PhysRevA.49.R2213.PMID 9910609.
  16. ^Brezger, Björn; Lucia Hackermüller; Stefan Uttenthaler; Julia Petschinka; Markus Arndt; Anton Zeilinger (2002). "Matter-wave interferometer for large molecules".Phys. Rev. Lett.88 (10) 100404.arXiv:quant-ph/0202158.Bibcode:2002PhRvL..88j0404B.doi:10.1103/PhysRevLett.88.100404.PMID 11909334.S2CID 19793304.
  17. ^Hornberger, Klaus; Stefan Uttenthaler; Björn Brezger; Lucia Hackermüller; Markus Arndt; Anton Zeilinger (2003). "Observation of Collisional Decoherence in Interferometry".Phys. Rev. Lett.90 (16) 160401.arXiv:quant-ph/0303093.Bibcode:2003PhRvL..90p0401H.doi:10.1103/PhysRevLett.90.160401.PMID 12731960.S2CID 31057272.
  18. ^Hackermüller, Lucia; Klaus Hornberger; Björn Brezger; Anton Zeilinger; Markus Arndt (2004). "Decoherence of matter waves by thermal emission of radiation".Nature.427 (6976):711–714.arXiv:quant-ph/0402146.Bibcode:2004Natur.427..711H.doi:10.1038/nature02276.PMID 14973478.S2CID 3482856.
  19. ^Gerlich, Stefan; et al. (2011)."Quantum interference of large organic molecules".Nature Communications.2 (263) 263.Bibcode:2011NatCo...2..263G.doi:10.1038/ncomms1263.PMC 3104521.PMID 21468015.
  20. ^Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. (2013). "Matter–wave interference of particles selected from a molecular library with masses exceeding 10 000 amu".Physical Chemistry Chemical Physics.15 (35):14696–14700.arXiv:1310.8343.Bibcode:2013PCCP...1514696E.doi:10.1039/c3cp51500a.PMID 23900710.S2CID 3944699.
  21. ^Cronin, Alexander D.; Schmiedmayer, Jörg; Pritchard, David E. (2009). "Optics and interferometry with atoms and molecules".Reviews of Modern Physics.81 (3):1051–1129.arXiv:0712.3703.Bibcode:2009RvMP...81.1051C.doi:10.1103/RevModPhys.81.1051.S2CID 28009912.
  22. ^Bongs, K.; Holynski, M.; Vovrosh, J.; Bouyer, P.; Condon, G.; Rasel, E.; Schubert, C.; Schleich, W.P.; Roura, A. (2019). "Taking atom interferometric quantum sensors from the laboratory to real-world applications".Nat. Rev. Phys.1 (12):731–739.Bibcode:2019NatRP...1..731B.doi:10.1038/s42254-019-0117-4.S2CID 209940190.
  23. ^Vovrosh, J.; Dragomir, A.; Stray, B.; Boddice, B. (2023)."Advances in Portable Atom Interferometry-Based Gravity Sensing".Sensors.23 (7): 7651.Bibcode:2023Senso..23.7651V.doi:10.3390/s23177651.PMC 10490657.PMID 37688106.
  24. ^Lindley, David (2005-07-12)."The Weight of Light".Physics.16: 1.doi:10.1103/PhysRevLett.4.337.
  25. ^Peters, Achim; Chung, Keng Yeow; Chu, Steven (August 1999)."Measurement of gravitational acceleration by dropping atoms".Nature.400 (6747):849–852.Bibcode:1999Natur.400..849P.doi:10.1038/23655.ISSN 1476-4687.
  26. ^Wu, Saijun; Su, Edward;Prentiss, Mara (2007-10-25)."Demonstration of an Area-Enclosing Guided-Atom Interferometer for Rotation Sensing".Physical Review Letters.99 (17) 173201.arXiv:physics/0608083.Bibcode:2007PhRvL..99q3201W.doi:10.1103/PhysRevLett.99.173201.PMID 17995327.
  27. ^McDonald, G. D.; Keal, H.; Altin, P. A.; Debs, J. E.; Bennetts, S.; Kuhn, C. C. N.; Hardman, K. S.; Johnsson, M. T.; Close, J. D.; Robins, N. P. (2013-01-28)."Optically guided linear Mach-Zehnder atom interferometer".Physical Review A.87 (1) 013632.arXiv:1212.4635.Bibcode:2013PhRvA..87a3632M.doi:10.1103/PhysRevA.87.013632.
  28. ^Rasel, E. M.; et al. (1995)."Atom Wave Interferometry with Diffraction Gratings of Light".Phys. Rev. Lett.75 (14):2633–2637.Bibcode:1995PhRvL..75.2633R.doi:10.1103/physrevlett.75.2633.PMID 10059366.
  29. ^Kasevich, Mark; Chu, Steven (1991-07-08)."Atomic interferometry using stimulated Raman transitions".Physical Review Letters.67 (2):181–184.Bibcode:1991PhRvL..67..181K.doi:10.1103/PhysRevLett.67.181.PMID 10044515.
  30. ^abcSorrentino, F.; Angelis, M. de; Bertoldi, A.; Cacciapuoti, L.; Giorgini, A.; Prevedelli, M.; Rosi, G.; Tino, G. M. (2009)."Precision measurements of gravity using cold atom sensors".Journal of the European Optical Society: Rapid Publications.4: 09025.Bibcode:2009JEOS....4E9025S.doi:10.2971/jeos.2009.09025.ISSN 1990-2573.
  31. ^"Optica Publishing Group".opg.optica.org. Retrieved2025-08-28.
  32. ^HosseiniArani, Alireza; Schilling, Manuel; Beaufils, Quentin; Knabe, Annike; Tennstedt, Benjamin; Kupriyanov, Alexey; Schön, Steffen; Pereira dos Santos, Franck; Müller, Jürgen (2024-10-01)."Advances in Atom Interferometry and their Impacts on the Performance of Quantum Accelerometers On-board Future Satellite Gravity Missions".Advances in Space Research.74 (7):3186–3200.arXiv:2404.10471.Bibcode:2024AdSpR..74.3186H.doi:10.1016/j.asr.2024.06.055.ISSN 0273-1177.
  33. ^Arndt, Markus (2013-02-25)."Free-Falling Interferometry".Physics.6 (9): 23.arXiv:1301.5883.doi:10.1103/PhysRevLett.110.093602.PMID 23496709.
  34. ^abMuller, Holger; Peters, Achim; Chu, Steven (2010)."A precision measurement of the gravitational redshift by the interference of matter waves".Nature.463 (7283):926–929.Bibcode:2010Natur.463..926M.doi:10.1038/nature08776.PMID 20164925.S2CID 4317164.
  35. ^Asenbaum, Peter; Overstreet, Chris; Kim, Minjeong; Curti, Joseph; Kasevich, Mark A. (2020)."Atom-Interferometric Test of the Equivalence Principle at the 10−12 Level".Physical Review Letters.125 (19) 191101.arXiv:2005.11624.doi:10.1103/PhysRevLett.125.191101.PMID 33216577.S2CID 218869931.
  36. ^Conover, Emily (October 28, 2020)."Galileo's famous gravity experiment holds up, even with individual atoms".Science News. RetrievedAugust 6, 2023.
  37. ^"Outline".MAGIS-100. Retrieved2025-08-07.
  38. ^Andersen, Ross D. (2013-10-01)."Gravitational Wave Detectors Get Ready to Hunt for the Big Bang".Scientific American. Retrieved2025-08-21.
  39. ^Fang, Jiancheng; Qin, Jie (2012)."Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications".Sensors.12 (5):6331–6346.Bibcode:2012Senso..12.6331F.doi:10.3390/s120506331.PMC 3386743.PMID 22778644.
  40. ^Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications. Full PDF

External links

[edit]
  • P. R. Berman [Editor],Atom Interferometry. Academic Press (1997). Detailed overview of atom interferometers at that time (good introductions and theory).
  • Stedman Review of the Sagnac Effect
Detectors
Resonant mass
antennas
Active
Past
Proposed
Past proposals
Ground-based
interferometers
Active
Past
Planned
Proposed
Past proposals
Space-based
interferometers
Planned
Proposed
Pulsar timing arrays
Data analysis
Observations
Events
Methods
Theory
Effects/properties
Types/sources
Retrieved from "https://en.wikipedia.org/w/index.php?title=Atom_interferometer&oldid=1323257820"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp