Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Asgard (Archaea)

From Wikipedia, the free encyclopedia
(Redirected fromAsgardaeota)
Kingdom of Archaea

Promethearchaeati
Scientific classificationEdit this classification
Domain:Archaea
Clade:Proteoarchaeota
Kingdom:Promethearchaeati
Imachiet al. 2024
Phyla

See text

Synonyms
  • "Asgard"Katarzyna Zaremba-Niedzwiedzkaet al. 2017
  • "Asgardaeota"Whitman 2018
  • "Asgardarchaeota"Violette Da Cunhaet al. 2017
  • "Eukaryomorpha"Fournier & Poole 2018[1]

Promethearchaeati is akingdom belonging to thedomainArchaea that containeukaryotic signatureproteins.[2] It appears that the eukaryotes, thedomain that contains theanimals,plants, andfungi,emerged within the Promethearchaeati,[3] in a branch containing theHeimdallarchaeia.[4] This supports thetwo-domain system of classification over thethree-domain system.[5][6]

After including the kingdom category intoICNP, the onlyvalidly published name of this group is kingdomPromethearchaeati, containing only onephylumPromethearchaeota. All formerly proposed "phyla" would be de-ranked toclasses in this framework.[7]

Discovery and nomenclature

[edit]

In the summer of 2010, sediments were analysed from a gravitycore taken in the rift valley on the Knipovich ridge in the Arctic Ocean, near theLoki's Castlehydrothermal vent site. Specific sediment horizons previously shown to contain high abundances of novel archaeal lineages were subjected tometagenomic analysis.[8][9] In 2015, anUppsala University-led team proposed theLokiarchaeota phylum based onphylogenetic analyses using a set ofhighly conserved protein-coding genes.[10] The group was named for the shape-shifting Norse godLoki, in an allusion to the hydrothermal vent complex from which the first genome sample originated.[11] The Loki of mythology has been described as "a staggeringly complex, confusing, and ambivalent figure who has been the catalyst of countless unresolved scholarly controversies",[12] analogous to the role of Lokiarchaeota in the debates about the origin of eukaryotes.[10][13]

In 2016, aUniversity of Texas-led team discoveredThorarchaeota from samples taken from theWhite Oak River in North Carolina, named in reference toThor, another Norse god.[14] Samples from Loki's Castle,Yellowstone National Park,Aarhus Bay, an aquifer near theColorado River, New Zealand'sRadiata Pool, hydrothermal vents nearTaketomi Island, Japan, and theWhite Oak River estuary in the United States contained Odinarchaeota and Heimdallarchaeota;[2] following the Norse deity naming convention, these groups were named forOdin andHeimdall respectively. Researchers therefore named the group containing these microbes "Asgard", after the home of the gods in Norse mythology.[2] Two Lokiarchaeota specimens have been cultured, enabling a detailed insight into their morphology.[15]

Description

[edit]

Proteins

[edit]

Promethearchaeati members encode many eukaryotic signature proteins, including novelGTPases, membrane-remodelling proteins likeESCRT andSNF7, aubiquitin modifier system, andN-glycosylation pathway homologs.[2]

Promethearchaeati archaeons have a regulatedactincytoskeleton, and theprofilins andgelsolins they use can interact with eukaryotic actins.[16][17] In addition, Promethearchaeati archaeatubulin from hydrothermal-living Odinarchaeota (OdinTubulin) was identified as a genuine tubulin. OdinTubulin forms protomers and protofilaments most similar to eukaryotic microtubules, yet assembles into ring systems more similar toFtsZ, indicating that OdinTubulin may represent an evolution intermediate between FtsZ andmicrotubule-forming tubulins.[18] They also seem to form vesicles undercryogenic electron microscopy. Some may have aPKD domainS-layer.[19] They also share the three-way ES39 expansion inLSU rRNA with eukaryotes.[20] Gene clusters or operons encoding ribosomal proteins are often less conserved in their organization in the Promethearchaeati kingdom than in other archaea, suggesting that the order of ribosomal protein coding genes may follow thephylogeny.[21]

Metabolism

[edit]
  • Metabolic pathways of Promethearchaeati archaea, varying by phyla[22]
    Metabolic pathways of Promethearchaeati archaea, varying by phyla[22]
  • Metabolic pathways of Promethearchaeati archaea, varying by environment[22]
    Metabolic pathways of Promethearchaeati archaea, varying by environment[22]

Promethearchaeati archaea are generallyobligate anaerobes, though Kariarchaeota, Gerdarchaeota and Hodarchaeota may befacultative aerobes.[23] They have aWood–Ljungdahl pathway and performglycolysis. Members can beautotrophs,heterotrophs, orphototrophs usingheliorhodopsin.[22] One member, "CandidatusPrometheoarchaeum syntrophicum", issyntrophic with a sulfur-reducingproteobacteria and amethanogenic archaea.[19]

TheRuBisCO they have is not carbon-fixing, but likely used for nucleoside salvaging.[22]

Ecology

[edit]

Promethearchaeati are widely distributed around the world, both geographically and by habitat. Many of the known clades are restricted to sediments, whereas Lokiarchaeota, Thorarchaeota and another clade occupy many different habitats. Salinity and depth are important ecological drivers for most Promethearchaeati archaea. Other habitats include the bodies of animals, the rhizosphere of plants, non-saline sediments and soils, the sea surface, and freshwater. In addition, Promethearchaeati are associated with several other microorganisms.[24]

Eukaryote-like features in subdivisions

[edit]

The phylum Heimdallarchaeota was found in 2017 to have N-terminal corehistone tails, a feature previously thought to be exclusively eukaryotic. Two other archaeal phyla, both outside of Promethearchaeati, were found to also have tails in 2018.[25]

In January 2020, scientists foundCandidatusPrometheoarchaeum syntrophicum, a member of the Lokiarcheota, engaging incross-feeding with two bacterial species. Drawing an analogy tosymbiogenesis, they consider this relationship a possible link between the simpleprokaryotic microorganisms and the complexeukaryotic microorganisms occurring approximately two billion years ago.[26][19]

Phylogeny

[edit]

The phylogenetic relationships of the Promethearchaeati archaea have been studied by several teams in the 21st century.[4][3][27][23] Varying results have been obtained, for instance using 53 marker proteins from theGenome Taxonomy Database.[28][29][30] In 2023, Eme, Tamarit, Caceres and colleagues reported that the Eukaryota are deep within Promethearchaeati, as sister of Hodarchaeales within the Heimdallarchaeota.[31]

Emeet al. 2023[31]09-RS220 (24 April 2024)[28][29][30]
Thermoproteati

Thermoproteota (TACK)

Promethearchaeati:

"Thorarchaeia" (MBG-B)

"Njordarchaeia"

"Odinarchaeia"

"Jordarchaeia"
"Jordarchaeales"

"Freyrarchaeaceae"

"Jordarchaeaceae"

"Baldrarchaeia"

"Hermodarchaeia"

Promethearchaeia

"Helarchaeales"

Promethearchaeales

"Sigynarchaeaceae"

Promethearchaeaceae
["Lokiarchaeaceae"]

"Sifarchaeia"

"Sifarchaeales"

"Borrarchaeales"

"Wukongarchaeia"

"Heimdallarchaeia"

"Hodarchaeales"

"Gerdarchaeales" (JABLTI01)

"Kariarchaeales"

"Heimdallarchaeales"

Promethearchaeota

Taxonomy

[edit]
Further information:Eukaryogenesis
In the theory ofsymbiogenesis, a merger of anarchaean and an aerobic bacterium created the eukaryotes, with aerobicmitochondria; a second merger addedchloroplasts, creating the green plants.[32]

In the depicted scenario, the Eukaryota are deep in the tree of Promethearchaeati. A favored scenario is syntrophy, where one organism depends on the feeding of the other. Anα-proteobacterium was incorporated to become themitochondrion.[33] In culture, extant Promethearchaeati archaea form various syntrophic dependencies.[34] Gregory Fournier and Anthony Poole have proposed that Promethearchaeati is part of "the Eukaryote tree", forming a superphylum they call "Eukaryomorpha" defined by "shared derived characters" (eukaryote signature proteins).[35]

The taxonomy is uncertain and the phylum names are therefore somewhat speculative. The list of phyla is based on theList of Prokaryotic names with Standing in Nomenclature (LPSN)[36][37] andNational Center for Biotechnology Information (NCBI).[38]

Genomic elements

[edit]

Viruses

[edit]

Severalfamily-level groups ofviruses associated with Promethearchaeati archaea have been discovered using metagenomics.[39][40][41] The viruses were assigned to Lokiarchaeia, Thorarchaeia, Odinarchaeia and Helarchaeia hosts using CRISPR spacer matching to the corresponding protospacers within the viral genomes. Two groups of viruses (called 'verdandiviruses') are related to archaeal and bacterial viruses of the classCaudoviricetes, i.e., viruses with icosahedral capsids and helical tails;[39][41] two other distinct groups (called 'skuldviruses') are distantly related to tailless archaeal and bacterial viruses with icosahedral capsids of the realmVaridnaviria;[39][40] and the third group of viruses (calledwyrdviruses) is related to archaea-specific viruses with lemon-shaped virus particles (familyHalspiviridae).[39][40] The viruses have been identified in deep-sea sediments[39][41] and a terrestrial hot spring of the Yellowstone National Park.[40] All these viruses display very low sequence similarity to other known viruses but are generally related to the previously described prokaryotic viruses,[42] with no meaningful affinity to viruses of eukaryotes.[43][39]

Mobile genetic elements

[edit]

In addition to viruses, several groups of crypticmobile genetic elements have been discovered throughCRISPR spacer matching to be associated with Promethearchaeati archaea of the Lokiarchaeia, Thorarchaeia and Heimdallarchaeota lineages.[39][44] These mobile elements do not encode recognizable viral hallmark proteins and could represent either novel types of viruses or plasmids.

See also

[edit]

References

[edit]
  1. ^Fournier, G.P.; Poole, A.M. (2018)."A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree".Frontiers in Microbiology.9: 1896.doi:10.3389/fmicb.2018.01896.PMC 6104171.PMID 30158917.
  2. ^abcdZaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F.; Saw, Jimmy H.; et al. (January 2017). "Asgard archaea illuminate the origin of eukaryotic cellular complexity".Nature.541 (7637):353–358.Bibcode:2017Natur.541..353Z.doi:10.1038/nature21031.OSTI 1580084.PMID 28077874.S2CID 4458094.
  3. ^abEme, Laura; Spang, Anja; Lombard, Jonathan; Stairs, Courtney W.; Ettema, Thijs J. G. (November 2017). "Archaea and the origin of eukaryotes".Nature Reviews. Microbiology.15 (12):711–723.doi:10.1038/nrmicro.2017.133.PMID 29123225.S2CID 8666687.
  4. ^abWilliams, Tom A.; Cox, Cymon J.; Foster, Peter G.; Szöllősi, Gergely J.; Embley, T. Martin (January 2020)."Phylogenomics provides robust support for a two-domains tree of life".Nature Ecology & Evolution.4 (1):138–147.doi:10.1038/s41559-019-1040-x.PMC 6942926.PMID 31819234.
  5. ^Nobs, Stephanie-Jane; MacLeod, Fraser I.; Wong, Hon Lun; Burns, Brendan P. (May 2022). "Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life?".Trends in Microbiology.30 (5):421–431.doi:10.1016/j.tim.2021.11.003.PMID 34863611.S2CID 244823103.
  6. ^Doolittle, W. Ford (February 2020)."Evolution: Two Domains of Life or Three?".Current Biology.30 (4):R177 –R179.Bibcode:2020CBio...30.R177D.doi:10.1016/j.cub.2020.01.010.PMID 32097647.
  7. ^Imachi, Hiroyuki; Nobu, Masaru K.; Kato, Shingo; Takaki, Yoshihiro; Miyazaki, Masayuki; Miyata, Makoto; Ogawara, Miyuki; Saito, Yumi; Sakai, Sanae; Tahara, Yuhei O.; Takano, Yoshinori; Tasumi, Eiji; Uematsu, Katsuyuki; Yoshimura, Toshihiro; Itoh, Takashi; Ohkuma, Moriya; Takai, Ken (5 July 2024). "Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage 'Asgard' archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov".International Journal of Systematic and Evolutionary Microbiology.74 (7).doi:10.1099/ijsem.0.006435.
  8. ^Jørgensen, Steffen Leth; Hannisdal, Bjarte; Lanzen, Anders; et al. (October 2012)."Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge".PNAS.109 (42):E2846 –E2855.doi:10.1073/pnas.1207574109.PMC 3479504.PMID 23027979.
  9. ^Jørgensen, Steffen Leth; Thorseth, Ingunn H.; Pedersen, Rolf B.; et al. (October 4, 2013)."Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the Arctic mid-ocean spreading ridge".Frontiers in Microbiology.4: 299.doi:10.3389/fmicb.2013.00299.PMC 3790079.PMID 24109477.
  10. ^abSpang, Anja; Saw, Jimmy H.; Jørgensen, Steffen L.; et al. (May 2015)."Complex archaea that bridge the gap between prokaryotes and eukaryotes".Nature.521 (7551):173–179.Bibcode:2015Natur.521..173S.doi:10.1038/nature14447.PMC 4444528.PMID 25945739.
  11. ^Yong, Ed."Break in the Search for the Origin of Complex Life".The Atlantic. Retrieved2018-03-21.
  12. ^von Schnurbein, Stefanie (November 2000). "The Function of Loki in Snorri Sturluson's "Edda"".History of Religions.40 (2):109–124.doi:10.1086/463618.
  13. ^Spang, Anja; Eme, Laura; Saw, Jimmy H.; et al. (March 2018)."Asgard archaea are the closest prokaryotic relatives of eukaryotes".PLOS Genetics.14 (3): e1007080.doi:10.1371/journal.pgen.1007080.PMC 5875740.PMID 29596421.
  14. ^Seitz, Kiley W.; Lazar, Cassandre S.; Hinrichs, Kai-Uwe; et al. (July 2016)."Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction".The ISME Journal.10 (7):1696–1705.Bibcode:2016ISMEJ..10.1696S.doi:10.1038/ismej.2015.233.PMC 4918440.PMID 26824177.
  15. ^Rodrigues-Oliveira, Thiago; Wollweber, Florian; Ponce-Toledo, Rafael I.; et al. (2023-01-12)."Actin cytoskeleton and complex cell architecture in an Asgard archaeon".Nature.613 (7943):332–339.Bibcode:2023Natur.613..332R.doi:10.1038/s41586-022-05550-y.ISSN 0028-0836.PMC 9834061.PMID 36544020.
  16. ^Akıl, Caner; Robinson, Robert C. (October 2018). "Genomes of Asgard archaea encode profilins that regulate actin".Nature.562 (7727):439–443.Bibcode:2018Natur.562..439A.doi:10.1038/s41586-018-0548-6.PMID 30283132.S2CID 52917038.
  17. ^Akıl, Caner; Tran, Linh T.; Orhant-Prioux, Magali; Baskaran, Yohendran; Manser, Edward; Blanchoin, Laurent; Robinson, Robert C. (August 2020)."Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea".Proceedings of the National Academy of Sciences of the United States of America.117 (33):19904–19913.Bibcode:2020PNAS..11719904A.bioRxiv 10.1101/768580.doi:10.1073/pnas.2009167117.PMC 7444086.PMID 32747565.
  18. ^Akıl, Caner; Ali, Samson; Tran, Linh T.; et al. (March 2022)."Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution".Science Advances.8 (12): eabm2225.Bibcode:2022SciA....8M2225A.doi:10.1126/sciadv.abm2225.PMC 8956254.PMID 35333570.
  19. ^abcImachi, Hiroyuki; Nobu, Masaru K.; Nakahara, Nozomi; et al. (January 2020)."Isolation of an archaeon at the prokaryote-eukaryote interface".Nature.577 (7791):519–525.Bibcode:2020Natur.577..519I.doi:10.1038/s41586-019-1916-6.PMC 7015854.PMID 31942073.
  20. ^Penev, Petar I.; Fakhretaha-Aval, Sara; Patel, Vaishnavi J.; et al. (October 2020)."Supersized Ribosomal RNA Expansion Segments in Asgard Archaea".Genome Biology and Evolution.12 (10):1694–1710.doi:10.1093/gbe/evaa170.PMC 7594248.PMID 32785681.
  21. ^Tirumalai, Madhan R.; Raghavan, Sivaraman V.; Kutty, Layla A.; Song, Eric L.; Fox, George E. (October 2023)."Ribosomal Protein Cluster Organization in Asgard Archaea".Archaea.2023: 16.doi:10.1155/2023/5512414.PMC 10833476.PMID 38314098.
  22. ^abcdMacLeod, Fraser; Kindler, Gareth S.; Wong, Hon Lun; Chen, Ray; Burns, Brendan P. (2019)."Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes".AIMS Microbiology.5 (1):48–61.doi:10.3934/microbiol.2019.1.48.PMC 6646929.PMID 31384702.
  23. ^abLiu, Yang; Makarova, Kira S.; Huang, Wen-Cong; et al. (2020)."Expanding diversity of Asgard archaea and the elusive ancestry of eukaryotes".bioRxiv.doi:10.1101/2020.10.19.343400.S2CID 225056970.
  24. ^Cai, Mingwei; Richter-Heitmann, Tim; Yin, Xiuran; et al. (2021). "Ecological features and global distribution of Asgard archaea".Science of the Total Environment.758: 143581.Bibcode:2021ScTEn.75843581C.doi:10.1016/j.scitotenv.2020.143581.ISSN 0048-9697.PMID 33223169.S2CID 227134171.
  25. ^Henneman, Bram; van Emmerik, Clara; van Ingen, Hugo; Dame, Remus T. (September 2018)."Structure and function of archaeal histones".PLOS Genetics.14 (9): e1007582.Bibcode:2018BpJ...114..446H.doi:10.1371/journal.pgen.1007582.PMC 6136690.PMID 30212449.
  26. ^Zimmer, Carl (15 January 2020)."This Strange Microbe May Mark One of Life's Great Leaps - A organism living in ocean muck offers clues to the origins of the complex cells of all animals and plants".The New York Times. Retrieved16 January 2020.
  27. ^Liu, Yang; Makarova, Kira S.; Huang, Wen-Cong; Wolf, Yuri I.; Nikolskaya, Anastasia; Zhang, Xinxu; et al. (May 2021)."Expanded diversity of Asgard archaea and their relationships with eukaryotes".Nature.593 (7860):553–557.Bibcode:2021Natur.593..553L.doi:10.1038/s41586-021-03494-3.PMC 11165668.PMID 33911286.S2CID 233447651.
  28. ^ab"GTDB release 09-RS220".Genome Taxonomy Database. Retrieved10 May 2024.
  29. ^ab"ar53_r220.sp_label".Genome Taxonomy Database. Retrieved10 May 2024.
  30. ^ab"Taxon History".Genome Taxonomy Database. Retrieved10 May 2024.
  31. ^abEme, Laura; Tamarit, Daniel; Caceres, Eva F.; et al. (2023-06-14)."Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes".Nature.618 (7967):992–999.Bibcode:2023Natur.618..992E.doi:10.1038/s41586-023-06186-2.PMC 10307638.PMID 37316666.
  32. ^Latorre, A.; Durban, A.; Moya, A.; Pereto, J. (2011)."The role of symbiosis in eukaryotic evolution". In Gargaud, M.; López-Garcìa, P.; Martin H. (eds.).Origins and Evolution of Life: An astrobiological perspective. Cambridge:Cambridge University Press. pp. 326–339.ISBN 978-0-521-76131-4.Archived from the original on 24 March 2019. Retrieved27 August 2017.
  33. ^López-García, Purificación; Moreira, David (July 2019)."Eukaryogenesis, a syntrophy affair".Nature Microbiology.4 (7):1068–1070.doi:10.1038/s41564-019-0495-5.PMC 6684364.PMID 31222170.
  34. ^Rodrigues-Oliveira, Thiago; Wollweber, Florian; Ponce-Toledo, Rafael I.; Xu, Jingwei; Rittmann, Simon K.-M. R.; Klingl, Andreas; Pilhofer, Martin; Schleper, Christa (January 2023)."Actin cytoskeleton and complex cell architecture in an Asgard archaeon".Nature.613 (7943):332–339.Bibcode:2023Natur.613..332R.doi:10.1038/s41586-022-05550-y.ISSN 1476-4687.PMC 9834061.PMID 36544020.
  35. ^Fournier, Gregory P.; Poole, Anthony M. (2018-08-15)."A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree".Frontiers in Microbiology.9: 1896.doi:10.3389/fmicb.2018.01896.ISSN 1664-302X.PMC 6104171.PMID 30158917.
  36. ^"Superphylum: Asgard".lpsn.dsmz.de. Retrieved2025-02-12.
  37. ^Euzéby, J.P."Superphylum "Asgardarchaeota"".List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved2021-06-27.
  38. ^"Asgard group".National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved2021-03-20.
  39. ^abcdefgMedvedeva, S.; Sun, J.; Yutin, N.;Koonin, Eugene V.; Nunoura, T.; Rinke, C.; Krupovic, M. (July 2022)."Three families of Asgard archaeal viruses identified in metagenome-assembled genomes".Nature Microbiology.7 (7):962–973.doi:10.1038/s41564-022-01144-6.PMC 11165672.PMID 35760839.S2CID 250091635.
  40. ^abcdTamarit, D.; Caceres, E.F.; Krupovic, M.; Nijland, R.; Eme, L.; Robinson, N.P.; Ettema, T.J.G. (July 2022)."A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses".Nature Microbiology.7 (7):948–952.doi:10.1038/s41564-022-01122-y.PMC 9246712.PMID 35760836.S2CID 250090798.
  41. ^abcRambo, I.M.; Langwig, M.V.; Leão, P.; De Anda, V.; Baker, B.J. (July 2022)."Genomes of six viruses that infect Asgard archaea from deep-sea sediments".Nature Microbiology.7 (7):953–961.doi:10.1038/s41564-022-01150-8.PMID 35760837.
  42. ^Prangishvili, D.; Bamford, D.H.; Forterre, P.; Iranzo, J.; Koonin, Eugene V.; Krupovic, M. (November 2017). "The enigmatic archaeal virosphere".Nature Reviews. Microbiology.15 (12):724–739.doi:10.1038/nrmicro.2017.125.PMID 29123227.S2CID 21789564.
  43. ^Alarcón-Schumacher, T.; Erdmann, S. (July 2022). "A trove of Asgard archaeal viruses".Nature Microbiology.7 (7):931–932.doi:10.1038/s41564-022-01148-2.PMID 35760838.S2CID 250091028.
  44. ^Wu, F.; Speth, D.R.; Philosof, A.; et al. (February 2022)."Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes".Nature Microbiology.7 (2):200–212.doi:10.1038/s41564-021-01039-y.PMC 8813620.PMID 35027677.

External links

[edit]
Prokaryotes:Archaea classification
Euryarchaeota
(Methanobacteriati)
"Hadarchaeota"
  • "Hadarchaeia"
    • "Hadarchaeales"
  • "Persephonarchaeia"
"Hydrothermarchaeota"
  • "Hydrothermarchaeia"
    • "Hydrothermarchaeales"
Methanobacteriota
Halobacteriota
Thermoplasmatota
DPANN
(Nanobdellati)
Proteoarchaeota
TACK
(Thermoproteati)
Thermoproteota
  • JANJXX01
    • "Panguiarchaeales"
  • Korarchaeia
    • "Korarchaeales"
  • Bathyarchaeia
    • "Bathyarchaeales"
    • "Bifangarchaeales"
    • "Hecatellales"
    • "Houtuarculales"
    • "Wuzhiqiibiales"
    • "Xuanwuarculales"
    • "Zhuquarculales"
  • Nitrososphaeria
  • "Methanomethylicia"
    • "Culexarchaeles"
    • "Methanohydrogenicales"
    • "Methanomethylarchaeales"
    • "Methanomethylicales"
    • "Methanomethylovorales"
    • "Nezhaarchaeales"
  • "Sulfolobia"
  • Thermoproteia
Asgardarchaeota
(Promethearchaeati)
Promethearchaeota
Heimdallarchaeota
  • Heimdallarchaeia
    • "Gerdarchaeales"
    • "Heimdallarchaeales"
    • "Hodarchaeales"
    • "Kariarchaeales"
  • "Njordarchaeia"
  • "Sifarchaeia"
    • "Borrarchaeales"
    • "Sifarchaeales"
  • "Tyrarchaeia"
  • "Wukongarchaeia"
Asgard
Retrieved from "https://en.wikipedia.org/w/index.php?title=Asgard_(Archaea)&oldid=1279437605"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp