Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Arithmetic geometry

From Wikipedia, the free encyclopedia
Branch of algebraic geometry focused on problems in number theory
Geometry
Stereographic projection from the top of a sphere onto a plane beneath it
Geometers
Thehyperelliptic curve defined byy2=x(x+1)(x3)(x+2)(x2){\displaystyle y^{2}=x(x+1)(x-3)(x+2)(x-2)} has only finitely manyrational points (such as the points(2,0){\displaystyle (-2,0)} and(1,0){\displaystyle (-1,0)}) byFaltings's theorem.

In mathematics,arithmetic geometry is roughly the application of techniques fromalgebraic geometry to problems innumber theory.[1] Arithmetic geometry is centered aroundDiophantine geometry, the study ofrational points ofalgebraic varieties.[2][3]

In more abstract terms, arithmetic geometry can be defined as the study ofschemes offinite type over thespectrum of thering of integers.[4]

Overview

[edit]

The classical objects of interest in arithmetic geometry are rational points:sets of solutions of asystem of polynomial equations overnumber fields,finite fields,p-adic fields, orfunction fields, i.e.fields that are notalgebraically closed excluding thereal numbers. Rational points can be directly characterized byheight functions which measure their arithmetic complexity.[5]

The structure of algebraic varieties defined over non-algebraically closed fields has become a central area of interest that arose with the modern abstract development of algebraic geometry. Over finite fields,étale cohomology providestopological invariants associated to algebraic varieties.[6]p-adic Hodge theory gives tools to examine when cohomological properties of varieties over thecomplex numbers extend to those overp-adic fields.[7]

History

[edit]

19th century: early arithmetic geometry

[edit]

In the early 19th century,Carl Friedrich Gauss observed that non-zerointeger solutions tohomogeneous polynomial equations withrational coefficients exist if non-zero rational solutions exist.[8]

In the 1850s,Leopold Kronecker formulated theKronecker–Weber theorem, introduced the theory ofdivisors, and made numerous other connections between number theory andalgebra. He then conjectured his "liebster Jugendtraum" ("dearest dream of youth"), a generalization that was later put forward by Hilbert in a modified form as histwelfth problem, which outlines a goal to have number theory operate only with rings that are quotients ofpolynomial rings over the integers.[9]

Early-to-mid 20th century: algebraic developments and the Weil conjectures

[edit]

In the late 1920s,André Weil demonstrated profound connections between algebraic geometry and number theory with his doctoral work leading to theMordell–Weil theorem which demonstrates that the set of rational points of anabelian variety is afinitely generated abelian group.[10]

Modern foundations of algebraic geometry were developed based on contemporarycommutative algebra, includingvaluation theory and the theory ofideals byOscar Zariski and others in the 1930s and 1940s.[11]

In 1949,André Weil posed the landmarkWeil conjectures about thelocal zeta-functions of algebraic varieties over finite fields.[12] These conjectures offered a framework between algebraic geometry and number theory that propelledAlexander Grothendieck to recast the foundations making use ofsheaf theory (together withJean-Pierre Serre), and later scheme theory, in the 1950s and 1960s.[13]Bernard Dwork proved one of the four Weil conjectures (rationality of the local zeta function) in 1960.[14] Grothendieck developed étale cohomology theory to prove two of the Weil conjectures (together withMichael Artin andJean-Louis Verdier) by 1965.[6][15] The last of the Weil conjectures (an analogue of theRiemann hypothesis) would be finally proven in 1974 byPierre Deligne.[16]

Mid-to-late 20th century: developments in modularity, p-adic methods, and beyond

[edit]

Between 1956 and 1957,Yutaka Taniyama andGoro Shimura posed theTaniyama–Shimura conjecture (now known as the modularity theorem) relatingelliptic curves tomodular forms.[17][18] This connection would ultimately lead tothe first proof ofFermat's Last Theorem in number theory through algebraic geometry techniques ofmodularity lifting developed byAndrew Wiles in 1995.[19]

In the 1960s, Goro Shimura introducedShimura varieties as generalizations ofmodular curves.[20] Since the 1979, Shimura varieties have played a crucial role in theLanglands program as a natural realm of examples for testing conjectures.[21]

In papers in 1977 and 1978,Barry Mazur proved thetorsion conjecture giving a complete list of the possible torsion subgroups of elliptic curves over the rational numbers. Mazur's first proof of this theorem depended upon a complete analysis of the rational points on certainmodular curves.[22][23] In 1996, the proof of the torsion conjecture was extended to all number fields byLoïc Merel.[24]

In 1983,Gerd Faltings proved theMordell conjecture, demonstrating that a curve of genus greater than 1 has only finitely many rational points (where the Mordell–Weil theorem only demonstratesfinite generation of the set of rational points as opposed to finiteness).[25][26]

In 2001, the proof of thelocal Langlands conjectures for GLn was based on the geometry of certain Shimura varieties.[27]

In the 2010s,Peter Scholze developedperfectoid spaces and new cohomology theories in arithmetic geometry over p-adic fields with application toGalois representations and certain cases of theweight-monodromy conjecture.[28][29]

See also

[edit]

References

[edit]
  1. ^Sutherland, Andrew V. (September 5, 2013)."Introduction to Arithmetic Geometry"(PDF). Retrieved22 March 2019.
  2. ^Klarreich, Erica (June 28, 2016)."Peter Scholze and the Future of Arithmetic Geometry". RetrievedMarch 22, 2019.
  3. ^Poonen, Bjorn (2009)."Introduction to Arithmetic Geometry"(PDF). RetrievedMarch 22, 2019.
  4. ^Arithmetic geometry at thenLab
  5. ^Lang, Serge (1997).Survey of Diophantine Geometry.Springer-Verlag. pp. 43–67.ISBN 3-540-61223-8.Zbl 0869.11051.
  6. ^abGrothendieck, Alexander (1960)."The cohomology theory of abstract algebraic varieties".Proc. Internat. Congress Math. (Edinburgh, 1958).Cambridge University Press. pp. 103–118.MR 0130879.
  7. ^Serre, Jean-Pierre (1967). "Résumé des cours, 1965–66".Annuaire du Collège de France. Paris:49–58.
  8. ^Mordell, Louis J. (1969).Diophantine Equations. Academic Press. p. 1.ISBN 978-0125062503.
  9. ^Gowers, Timothy; Barrow-Green, June; Leader, Imre (2008).The Princeton companion to mathematics. Princeton University Press. pp. 773–774.ISBN 978-0-691-11880-2.
  10. ^A. Weil,L'arithmétique sur les courbes algébriques, Acta Math 52, (1929) p. 281-315, reprinted in vol 1 of his collected papersISBN 0-387-90330-5.
  11. ^Zariski, Oscar (2004) [1935].Abhyankar, Shreeram S.;Lipman, Joseph;Mumford, David (eds.).Algebraic surfaces. Classics in mathematics (second supplemented ed.). Berlin, New York:Springer-Verlag.ISBN 978-3-540-58658-6.MR 0469915.
  12. ^Weil, André (1949)."Numbers of solutions of equations in finite fields".Bulletin of the American Mathematical Society.55 (5):497–508.doi:10.1090/S0002-9904-1949-09219-4.ISSN 0002-9904.MR 0029393. Reprinted in Oeuvres Scientifiques/Collected Papers by André WeilISBN 0-387-90330-5
  13. ^Serre, Jean-Pierre (1955). "Faisceaux Algebriques Coherents".The Annals of Mathematics.61 (2):197–278.doi:10.2307/1969915.JSTOR 1969915.
  14. ^Dwork, Bernard (1960). "On the rationality of the zeta function of an algebraic variety".American Journal of Mathematics.82 (3). American Journal of Mathematics, Vol. 82, No. 3:631–648.doi:10.2307/2372974.ISSN 0002-9327.JSTOR 2372974.MR 0140494.
  15. ^Grothendieck, Alexander (1995) [1965]."Formule de Lefschetz et rationalité des fonctions L".Séminaire Bourbaki. Vol. 9. Paris:Société Mathématique de France. pp. 41–55.MR 1608788.
  16. ^Deligne, Pierre (1974)."La conjecture de Weil. I".Publications Mathématiques de l'IHÉS.43 (1):273–307.doi:10.1007/BF02684373.ISSN 1618-1913.MR 0340258.
  17. ^Taniyama, Yutaka (1956). "Problem 12".Sugaku (in Japanese).7: 269.
  18. ^Shimura, Goro (1989)."Yutaka Taniyama and his time. Very personal recollections".The Bulletin of the London Mathematical Society.21 (2):186–196.doi:10.1112/blms/21.2.186.ISSN 0024-6093.MR 0976064.
  19. ^Wiles, Andrew (1995)."Modular elliptic curves and Fermat's Last Theorem"(PDF).Annals of Mathematics.141 (3):443–551.CiteSeerX 10.1.1.169.9076.doi:10.2307/2118559.JSTOR 2118559.OCLC 37032255. Archived fromthe original(PDF) on 2011-05-10. Retrieved2019-03-22.
  20. ^Shimura, Goro (2003).The Collected Works of Goro Shimura. Springer Nature.ISBN 978-0387954158.
  21. ^Langlands, Robert (1979)."Automorphic Representations, Shimura Varieties, and Motives. Ein Märchen"(PDF). InBorel, Armand;Casselman, William (eds.).Automorphic Forms, Representations, and L-Functions: Symposium in Pure Mathematics. Vol. XXXIII Part 1. Chelsea Publishing Company. pp. 205–246.
  22. ^Mazur, Barry (1977)."Modular curves and the Eisenstein ideal".Publications Mathématiques de l'IHÉS.47 (1):33–186.doi:10.1007/BF02684339.MR 0488287.
  23. ^Mazur, Barry (1978). "Rational isogenies of prime degree".Inventiones Mathematicae.44 (2). with appendix byDorian Goldfeld:129–162.Bibcode:1978InMat..44..129M.doi:10.1007/BF01390348.MR 0482230.
  24. ^Merel, Loïc (1996). "Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields].Inventiones Mathematicae (in French).124 (1):437–449.Bibcode:1996InMat.124..437M.doi:10.1007/s002220050059.MR 1369424.
  25. ^Faltings, Gerd (1983). "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern" [Finiteness theorems for abelian varieties over number fields].Inventiones Mathematicae (in German).73 (3):349–366.Bibcode:1983InMat..73..349F.doi:10.1007/BF01388432.MR 0718935.
  26. ^Faltings, Gerd (1984)."Erratum: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern".Inventiones Mathematicae (in German).75 (2): 381.doi:10.1007/BF01388572.MR 0732554.
  27. ^Harris, Michael;Taylor, Richard (2001).The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies. Vol. 151.Princeton University Press.ISBN 978-0-691-09090-0.MR 1876802.
  28. ^"Fields Medals 2018".International Mathematical Union. Retrieved2 August 2018.
  29. ^Scholze, Peter."Perfectoid spaces: A survey"(PDF).University of Bonn. Retrieved4 November 2018.
Fields
Key concepts
Advanced concepts
Majormathematics areas
Foundations
Algebra
Analysis
Discrete
Geometry
Number theory
Topology
Applied
Computational
Related topics
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Arithmetic_geometry&oldid=1321395466"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp