Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Arithmetic function

From Wikipedia, the free encyclopedia
This articleis inlist format but may read better asprose. You can help byconverting this article, if appropriate.Editing help is available.(July 2020)
Function whose domain is the positive integers
This article uses technical mathematical notation for logarithms. All instances oflog(x) without a subscript base should be interpreted as anatural logarithm, also commonly written asln(x) orloge(x).

Innumber theory, anarithmetic,arithmetical, ornumber-theoretic function[1][2] is generally anyfunction whosedomain is the set ofpositive integers and whose range is asubset of thecomplex numbers.[3][4][5] Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property ofn".[6] There is a larger class of number-theoretic functions that do not fit this definition, for example, theprime-counting functions. This article provides links to functions of both classes.

An example of an arithmetic function is thedivisor function whose value at a positive integern is equal to the number of divisors ofn.

Arithmetic functions are often extremely irregular (seetable), but some of them have series expansions in terms ofRamanujan's sum.

Multiplicative and additive functions

[edit]

An arithmetic functiona is

Two whole numbersm andn are calledcoprime if theirgreatest common divisor is 1, that is, if there is noprime number that divides both of them.

Then an arithmetic functiona is

  • additive ifa(mn) =a(m) +a(n) for all coprime natural numbersm andn;
  • multiplicative ifa(1) = 1 anda(mn) =a(m)a(n) for all coprime natural numbersm andn.

Notation

[edit]

In this article,pf(p){\textstyle \sum _{p}f(p)} andpf(p){\textstyle \prod _{p}f(p)} mean that the sum or product is over allprime numbers:pf(p)=f(2)+f(3)+f(5)+{\displaystyle \sum _{p}f(p)=f(2)+f(3)+f(5)+\cdots }andpf(p)=f(2)f(3)f(5).{\displaystyle \prod _{p}f(p)=f(2)f(3)f(5)\cdots .}Similarly,pkf(pk){\textstyle \sum _{p^{k}}f(p^{k})} andpkf(pk){\textstyle \prod _{p^{k}}f(p^{k})} mean that the sum or product is over allprime powers with strictly positive exponent (sok = 0 is not included):pkf(pk)=pk>0f(pk)=f(2)+f(3)+f(4)+f(5)+f(7)+f(8)+f(9)+.{\displaystyle \sum _{p^{k}}f(p^{k})=\sum _{p}\sum _{k>0}f(p^{k})=f(2)+f(3)+f(4)+f(5)+f(7)+f(8)+f(9)+\cdots .}

The notationsdnf(d){\textstyle \sum _{d\mid n}f(d)} anddnf(d){\textstyle \prod _{d\mid n}f(d)} mean that the sum or product is over all positive divisors ofn, including 1 andn. For example, ifn = 12, thend12f(d)=f(1)f(2)f(3)f(4)f(6)f(12).{\displaystyle \prod _{d\mid 12}f(d)=f(1)f(2)f(3)f(4)f(6)f(12).}

The notations can be combined:pnf(p){\textstyle \sum _{p\mid n}f(p)} andpnf(p){\textstyle \prod _{p\mid n}f(p)} mean that the sum or product is over all prime divisors ofn. For example, ifn = 18, thenp18f(p)=f(2)+f(3),{\displaystyle \sum _{p\mid 18}f(p)=f(2)+f(3),}and similarlypknf(pk){\textstyle \sum _{p^{k}\mid n}f(p^{k})} andpknf(pk){\textstyle \prod _{p^{k}\mid n}f(p^{k})} mean that the sum or product is over all prime powers dividingn. For example, ifn = 24, thenpk24f(pk)=f(2)f(3)f(4)f(8).{\displaystyle \prod _{p^{k}\mid 24}f(p^{k})=f(2)f(3)f(4)f(8).}

Ω(n),ω(n),νp(n) – prime power decomposition

[edit]

Thefundamental theorem of arithmetic states that any positive integern can be represented uniquely as a product of powers of primes:n=p1a1pkak{\displaystyle n=p_{1}^{a_{1}}\cdots p_{k}^{a_{k}}} wherep1 <p2 < ... <pk are primes and theaj are positive integers. (1 is given by the empty product.)

It is often convenient to write this as an infinite product over all the primes, where all but a finite number have a zero exponent. Define thep-adic valuationνp(n) to be the exponent of the highest power of the primep that dividesn. That is, ifp is one of thepi thenνp(n) =ai, otherwise it is zero. Thenn=ppνp(n).{\displaystyle n=\prod _{p}p^{\nu _{p}(n)}.}

In terms of the above theprime omega functionsω and Ω are defined by

ω(n) =k,
Ω(n) =a1 +a2 + ... +ak.

To avoid repetition, formulas for the functions listed in this article are, whenever possible, given in terms ofn and the correspondingpi,ai,ω, and Ω.

Multiplicative functions

[edit]

σk(n),τ(n),d(n) – divisor sums

[edit]

σk(n) is the sum of thekth powers of the positive divisors ofn, including 1 andn, wherek is a complex number.

σ1(n), the sum of the (positive) divisors ofn, is usually denoted byσ(n).

Since a positive number to the zero power is one,σ0(n) is therefore the number of (positive) divisors ofn; it is usually denoted byd(n) orτ(n) (for the GermanTeiler = divisors).

σk(n)=i=1ω(n)pi(ai+1)k1pik1=i=1ω(n)(1+pik+pi2k++piaik).{\displaystyle \sigma _{k}(n)=\prod _{i=1}^{\omega (n)}{\frac {p_{i}^{(a_{i}+1)k}-1}{p_{i}^{k}-1}}=\prod _{i=1}^{\omega (n)}\left(1+p_{i}^{k}+p_{i}^{2k}+\cdots +p_{i}^{a_{i}k}\right).}

Settingk = 0 in the second product givesτ(n)=d(n)=(1+a1)(1+a2)(1+aω(n)).{\displaystyle \tau (n)=d(n)=(1+a_{1})(1+a_{2})\cdots (1+a_{\omega (n)}).}

φ(n) – Euler totient function

[edit]

φ(n), the Euler totient function, is the number of positive integers not greater thann that are coprime ton.φ(n)=npn(11p)=n(p11p1)(p21p2)(pω(n)1pω(n)).{\displaystyle \varphi (n)=n\prod _{p\mid n}\left(1-{\frac {1}{p}}\right)=n\left({\frac {p_{1}-1}{p_{1}}}\right)\left({\frac {p_{2}-1}{p_{2}}}\right)\cdots \left({\frac {p_{\omega (n)}-1}{p_{\omega (n)}}}\right).}

Jk(n) – Jordan totient function

[edit]

Jk(n), the Jordan totient function, is the number ofk-tuples of positive integers all less than or equal ton that form a coprime (k + 1)-tuple together withn. It is a generalization of Euler's totient,φ(n) =J1(n).Jk(n)=nkpn(11pk)=nk(p1k1p1k)(p2k1p2k)(pω(n)k1pω(n)k).{\displaystyle J_{k}(n)=n^{k}\prod _{p\mid n}\left(1-{\frac {1}{p^{k}}}\right)=n^{k}\left({\frac {p_{1}^{k}-1}{p_{1}^{k}}}\right)\left({\frac {p_{2}^{k}-1}{p_{2}^{k}}}\right)\cdots \left({\frac {p_{\omega (n)}^{k}-1}{p_{\omega (n)}^{k}}}\right).}

μ(n) – Möbius function

[edit]

μ(n), the Möbius function, is important because of theMöbius inversion formula. See§ Dirichlet convolution, below.μ(n)={(1)ω(n)=(1)Ω(n)if ω(n)=Ω(n)0if ω(n)Ω(n).{\displaystyle \mu (n)={\begin{cases}(-1)^{\omega (n)}=(-1)^{\Omega (n)}&{\text{if }}\;\omega (n)=\Omega (n)\\0&{\text{if }}\;\omega (n)\neq \Omega (n).\end{cases}}}

This implies thatμ(1) = 1. (Because Ω(1) =ω(1) = 0.)

τ(n) – Ramanujan tau function

[edit]

τ(n), the Ramanujan tau function, is defined by itsgenerating function identity:n1τ(n)qn=qn1(1qn)24.{\displaystyle \sum _{n\geq 1}\tau (n)q^{n}=q\prod _{n\geq 1}(1-q^{n})^{24}.}

Although it is hard to say exactly what "arithmetical property ofn" it "expresses",[7] (τ(n) is (2π)−12 times thenth Fourier coefficient in theq-expansion of themodular discriminant function)[8] it is included among the arithmetical functions because it is multiplicative and it occurs in identities involving certainσk(n) andrk(n) functions (because these are also coefficients in the expansion ofmodular forms).

cq(n) – Ramanujan's sum

[edit]

cq(n), Ramanujan's sum, is the sum of thenth powers of the primitiveqthroots of unity:cq(n)=gcd(a,q)=11aqe2πiaqn.{\displaystyle c_{q}(n)=\sum _{\stackrel {1\leq a\leq q}{\gcd(a,q)=1}}e^{2\pi i{\tfrac {a}{q}}n}.}

Even though it is defined as a sum of complex numbers (irrational for most values ofq), it is an integer. For a fixed value ofn it is multiplicative inq:

Ifq andr are coprime, thencq(n)cr(n)=cqr(n).{\displaystyle c_{q}(n)c_{r}(n)=c_{qr}(n).}

ψ(n) – Dedekind psi function

[edit]

TheDedekind psi function, used in the theory ofmodular functions, is defined by the formulaψ(n)=np|n(1+1p).{\displaystyle \psi (n)=n\prod _{p|n}\left(1+{\frac {1}{p}}\right).}

Completely multiplicative functions

[edit]

λ(n) – Liouville function

[edit]

λ(n), the Liouville function, is defined byλ(n)=(1)Ω(n).{\displaystyle \lambda (n)=(-1)^{\Omega (n)}.}

χ(n) – characters

[edit]

AllDirichlet charactersχ(n) are completely multiplicative. Two characters have special notations:

Theprincipal character (modn) is denoted byχ0(a) (orχ1(a)). It is defined asχ0(a)={1if gcd(a,n)=1,0if gcd(a,n)1.{\displaystyle \chi _{0}(a)={\begin{cases}1&{\text{if }}\gcd(a,n)=1,\\0&{\text{if }}\gcd(a,n)\neq 1.\end{cases}}}

Thequadratic character (modn) is denoted by theJacobi symbol for oddn (it is not defined for evenn):(an)=(ap1)a1(ap2)a2(apω(n))aω(n).{\displaystyle \left({\frac {a}{n}}\right)=\left({\frac {a}{p_{1}}}\right)^{a_{1}}\left({\frac {a}{p_{2}}}\right)^{a_{2}}\cdots \left({\frac {a}{p_{\omega (n)}}}\right)^{a_{\omega (n)}}.}

In this formula(ap){\displaystyle ({\tfrac {a}{p}})} is theLegendre symbol, defined for all integersa and all odd primesp by(ap)={0if a0(modp),+1if a0(modp) and for some integer x,ax2(modp)1if there is no such x.{\displaystyle \left({\frac {a}{p}}\right)={\begin{cases}\;\;\,0&{\text{if }}a\equiv 0{\pmod {p}},\\+1&{\text{if }}a\not \equiv 0{\pmod {p}}{\text{ and for some integer }}x,\;a\equiv x^{2}{\pmod {p}}\\-1&{\text{if there is no such }}x.\end{cases}}}

Following the normal convention for the empty product,(a1)=1.{\displaystyle \left({\frac {a}{1}}\right)=1.}

Additive functions

[edit]

ω(n) – distinct prime divisors

[edit]

ω(n), defined above as the number of distinct primes dividingn, is additive (seePrime omega function).

Completely additive functions

[edit]

Ω(n) – prime divisors

[edit]

Ω(n), defined above as the number of prime factors ofn counted with multiplicities, is completely additive (seePrime omega function).

νp(n) –p-adic valuation of an integern

[edit]

For a fixed primep,νp(n), defined above as the exponent of the largest power ofp dividingn, is completely additive.

Logarithmic derivative

[edit]

ld(n)=D(n)n=p primepnvp(n)p{\displaystyle \operatorname {ld} (n)={\frac {D(n)}{n}}=\sum _{\stackrel {p\mid n}{p{\text{ prime}}}}{\frac {v_{p}(n)}{p}}}, whereD(n){\displaystyle D(n)} is thearithmetic derivative.

Neither multiplicative nor additive

[edit]

π(x), Π(x),ϑ(x),ψ(x) – prime-counting functions

[edit]

These important functions (which are not arithmetic functions) are defined for non-negative real arguments, and are used in the various statements and proofs of theprime number theorem. They are summation functions (see the main section just below) of arithmetic functions which are neither multiplicative nor additive.

π(x), theprime-counting function, is the number of primes not exceedingx. It is the summation function of thecharacteristic function of the prime numbers.π(x)=px1{\displaystyle \pi (x)=\sum _{p\leq x}1}

A related function counts prime powers with weight 1 for primes, 1/2 for their squares, 1/3 for cubes, etc. It is the summation function of the arithmetic function which takes the value 1/k on integers which are thekth power of some prime number, and the value 0 on other integers.Π(x)=pkx1k.{\displaystyle \Pi (x)=\sum _{p^{k}\leq x}{\frac {1}{k}}.}

ϑ(x) andψ(x), theChebyshev functions, are defined as sums of the natural logarithms of the primes not exceedingx.ϑ(x)=pxlogp,{\displaystyle \vartheta (x)=\sum _{p\leq x}\log p,}ψ(x)=pkxlogp.{\displaystyle \psi (x)=\sum _{p^{k}\leq x}\log p.}

The second Chebyshev functionψ(x) is the summation function of the von Mangoldt function just below.

Λ(n) – von Mangoldt function

[edit]

Λ(n), the von Mangoldt function, is 0 unless the argumentn is a prime powerpk, in which case it is the natural logarithm of the primep:Λ(n)={logpif n=2,3,4,5,7,8,9,11,13,16,=pk is a prime power0if n=1,6,10,12,14,15,18,20,21, is not a prime power.{\displaystyle \Lambda (n)={\begin{cases}\log p&{\text{if }}n=2,3,4,5,7,8,9,11,13,16,\ldots =p^{k}{\text{ is a prime power}}\\0&{\text{if }}n=1,6,10,12,14,15,18,20,21,\dots \;\;\;\;{\text{ is not a prime power}}.\end{cases}}}

p(n) – partition function

[edit]

p(n), the partition function, is the number of ways of representingn as a sum of positive integers, where two representations with the same summands in a different order are not counted as being different:p(n)=|{(a1,a2,ak):0<a1a2akn=a1+a2++ak}|.{\displaystyle p(n)=\left|\left\{(a_{1},a_{2},\dots a_{k}):0<a_{1}\leq a_{2}\leq \cdots \leq a_{k}\;\land \;n=a_{1}+a_{2}+\cdots +a_{k}\right\}\right|.}

λ(n) – Carmichael function

[edit]

λ(n), the Carmichael function, is the smallest positive number such thataλ(n)1(modn){\displaystyle a^{\lambda (n)}\equiv 1{\pmod {n}}}   for alla coprime ton. Equivalently, it is theleast common multiple of the orders of the elements of themultiplicative group of integers modulon.

For powers of odd primes and for 2 and 4,λ(n) is equal to the Euler totient function ofn; for powers of 2 greater than 4 it is equal to one half of the Euler totient function ofn:λ(n)={ϕ(n)if n=2,3,4,5,7,9,11,13,17,19,23,25,27,12ϕ(n)if n=8,16,32,64,{\displaystyle \lambda (n)={\begin{cases}\;\;\phi (n)&{\text{if }}n=2,3,4,5,7,9,11,13,17,19,23,25,27,\dots \\{\tfrac {1}{2}}\phi (n)&{\text{if }}n=8,16,32,64,\dots \end{cases}}}and for generaln it is the least common multiple ofλ of each of the prime power factors ofn:λ(p1a1p2a2pω(n)aω(n))=lcm[λ(p1a1),λ(p2a2),,λ(pω(n)aω(n))].{\displaystyle \lambda (p_{1}^{a_{1}}p_{2}^{a_{2}}\dots p_{\omega (n)}^{a_{\omega (n)}})=\operatorname {lcm} [\lambda (p_{1}^{a_{1}}),\;\lambda (p_{2}^{a_{2}}),\dots ,\lambda (p_{\omega (n)}^{a_{\omega (n)}})].}

h(n) – class number

[edit]

h(n), the class number function, is the order of theideal class group of an algebraic extension of the rationals withdiscriminantn. The notation is ambiguous, as there are in general many extensions with the same discriminant. Seequadratic field andcyclotomic field for classical examples.

rk(n) – sum ofk squares

[edit]

rk(n) is the number of waysn can be represented as the sum ofk squares, where representations that differ only in the order of the summands or in the signs of the square roots are counted as different.rk(n)=|{(a1,a2,,ak):n=a12+a22++ak2}|{\displaystyle r_{k}(n)=\left|\left\{(a_{1},a_{2},\dots ,a_{k}):n=a_{1}^{2}+a_{2}^{2}+\cdots +a_{k}^{2}\right\}\right|}

D(n) – Arithmetic derivative

[edit]

Using theHeaviside notation for the derivative, thearithmetic derivativeD(n) is a function such that

Summation functions

[edit]

Given an arithmetic functiona(n), itssummation functionA(x) is defined byA(x):=nxa(n).{\displaystyle A(x):=\sum _{n\leq x}a(n).}A can be regarded as a function of a real variable. Given a positive integerm,A is constant alongopen intervalsm <x <m + 1, and has ajump discontinuity at each integer for whicha(m) ≠ 0.

Since such functions are often represented by series and integrals, to achieve pointwise convergence it is usual to define the value at the discontinuities as the average of the values to the left and right:A0(m):=12(n<ma(n)+nma(n))=A(m)12a(m).{\displaystyle A_{0}(m):={\frac {1}{2}}\left(\sum _{n<m}a(n)+\sum _{n\leq m}a(n)\right)=A(m)-{\frac {1}{2}}a(m).}

Individual values of arithmetic functions may fluctuate wildly – as in most of the above examples. Summation functions "smooth out" these fluctuations. In some cases it may be possible to findasymptotic behaviour for the summation function for largex.

A classical example of this phenomenon[9] is given by thedivisor summatory function, the summation function ofd(n), the number of divisors ofn:lim infnd(n)=2{\displaystyle \liminf _{n\to \infty }d(n)=2}lim supnlogd(n)loglognlogn=log2{\displaystyle \limsup _{n\to \infty }{\frac {\log d(n)\log \log n}{\log n}}=\log 2}limnd(1)+d(2)++d(n)log(1)+log(2)++log(n)=1.{\displaystyle \lim _{n\to \infty }{\frac {d(1)+d(2)+\cdots +d(n)}{\log(1)+\log(2)+\cdots +\log(n)}}=1.}

Anaverage order of an arithmetic function is some simpler or better-understood function which has the same summation function asymptotically, and hence takes the same values "on average". We say thatg is anaverage order off ifnxf(n)nxg(n){\displaystyle \sum _{n\leq x}f(n)\sim \sum _{n\leq x}g(n)}

asx tends to infinity. The example above shows thatd(n) has the average order log(n).[10]

Dirichlet convolution

[edit]

Given an arithmetic functiona(n), letFa(s), for complexs, be the function defined by the correspondingDirichlet series (where itconverges):[11]Fa(s):=n=1a(n)ns.{\displaystyle F_{a}(s):=\sum _{n=1}^{\infty }{\frac {a(n)}{n^{s}}}.}Fa(s) is called agenerating function ofa(n). The simplest such series, corresponding to the constant functiona(n) = 1 for alln, isζ(s) theRiemann zeta function.

The generating function of the Möbius function is the inverse of the zeta function:ζ(s)n=1μ(n)ns=1,s>1.{\displaystyle \zeta (s)\,\sum _{n=1}^{\infty }{\frac {\mu (n)}{n^{s}}}=1,\;\;\Re s>1.}

Consider two arithmetic functionsa andb and their respective generating functionsFa(s) andFb(s). The productFa(s)Fb(s) can be computed as follows:Fa(s)Fb(s)=(m=1a(m)ms)(n=1b(n)ns).{\displaystyle F_{a}(s)F_{b}(s)=\left(\sum _{m=1}^{\infty }{\frac {a(m)}{m^{s}}}\right)\left(\sum _{n=1}^{\infty }{\frac {b(n)}{n^{s}}}\right).}

It is a straightforward exercise to show that ifc(n) is defined byc(n):=ij=na(i)b(j)=ina(i)b(ni),{\displaystyle c(n):=\sum _{ij=n}a(i)b(j)=\sum _{i\mid n}a(i)b\left({\frac {n}{i}}\right),}thenFc(s)=Fa(s)Fb(s).{\displaystyle F_{c}(s)=F_{a}(s)F_{b}(s).}

This functionc is called theDirichlet convolution ofa andb, and is denoted byab{\displaystyle a*b}.

A particularly important case is convolution with the constant functiona(n) = 1 for alln, corresponding to multiplying the generating function by the zeta function:g(n)=dnf(d).{\displaystyle g(n)=\sum _{d\mid n}f(d).}

Multiplying by the inverse of the zeta function gives theMöbius inversion formula:f(n)=dnμ(nd)g(d).{\displaystyle f(n)=\sum _{d\mid n}\mu \left({\frac {n}{d}}\right)g(d).}

Iff is multiplicative, then so isg. Iff is completely multiplicative, theng is multiplicative, but may or may not be completely multiplicative.

Relations among the functions

[edit]

There are a great many formulas connecting arithmetical functions with each other and with the functions of analysis, especially powers, roots, and the exponential and log functions. The pagedivisor sum identities contains many more generalized and related examples of identities involving arithmetic functions.

Here are a few examples:

Dirichlet convolutions

[edit]
δnμ(δ)=δnλ(nδ)|μ(δ)|={1if n=10if n1{\displaystyle \sum _{\delta \mid n}\mu (\delta )=\sum _{\delta \mid n}\lambda \left({\frac {n}{\delta }}\right)|\mu (\delta )|={\begin{cases}1&{\text{if }}n=1\\0&{\text{if }}n\neq 1\end{cases}}}     whereλ is the Liouville function.[12]
δnφ(δ)=n.{\displaystyle \sum _{\delta \mid n}\varphi (\delta )=n.}      [13]
φ(n)=δnμ(nδ)δ=nδnμ(δ)δ.{\displaystyle \varphi (n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\delta =n\sum _{\delta \mid n}{\frac {\mu (\delta )}{\delta }}.}       Möbius inversion
dnJk(d)=nk.{\displaystyle \sum _{d\mid n}J_{k}(d)=n^{k}.}      [14]
Jk(n)=δnμ(nδ)δk=nkδnμ(δ)δk.{\displaystyle J_{k}(n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\delta ^{k}=n^{k}\sum _{\delta \mid n}{\frac {\mu (\delta )}{\delta ^{k}}}.}       Möbius inversion
δnδsJr(δ)Js(nδ)=Jr+s(n){\displaystyle \sum _{\delta \mid n}\delta ^{s}J_{r}(\delta )J_{s}\left({\frac {n}{\delta }}\right)=J_{r+s}(n)}      [15]
δnφ(δ)d(nδ)=σ(n).{\displaystyle \sum _{\delta \mid n}\varphi (\delta )d\left({\frac {n}{\delta }}\right)=\sigma (n).}      [16][17]
δn|μ(δ)|=2ω(n).{\displaystyle \sum _{\delta \mid n}|\mu (\delta )|=2^{\omega (n)}.}      [18]
|μ(n)|=δnμ(nδ)2ω(δ).{\displaystyle |\mu (n)|=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)2^{\omega (\delta )}.}       Möbius inversion
δn2ω(δ)=d(n2).{\displaystyle \sum _{\delta \mid n}2^{\omega (\delta )}=d(n^{2}).}      
2ω(n)=δnμ(nδ)d(δ2).{\displaystyle 2^{\omega (n)}=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)d(\delta ^{2}).}       Möbius inversion
δnd(δ2)=d2(n).{\displaystyle \sum _{\delta \mid n}d(\delta ^{2})=d^{2}(n).}      
d(n2)=δnμ(nδ)d2(δ).{\displaystyle d(n^{2})=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)d^{2}(\delta ).}       Möbius inversion
δnd(nδ)2ω(δ)=d2(n).{\displaystyle \sum _{\delta \mid n}d\left({\frac {n}{\delta }}\right)2^{\omega (\delta )}=d^{2}(n).}      
δnλ(δ)={1 if n is a square 0 if n is not square.{\displaystyle \sum _{\delta \mid n}\lambda (\delta )={\begin{cases}&1{\text{ if }}n{\text{ is a square }}\\&0{\text{ if }}n{\text{ is not square.}}\end{cases}}}     where λ is theLiouville function.
δnΛ(δ)=logn.{\displaystyle \sum _{\delta \mid n}\Lambda (\delta )=\log n.}      [19]
Λ(n)=δnμ(nδ)log(δ).{\displaystyle \Lambda (n)=\sum _{\delta \mid n}\mu \left({\frac {n}{\delta }}\right)\log(\delta ).}       Möbius inversion

Sums of squares

[edit]

For allk4,rk(n)>0.{\displaystyle k\geq 4,\;\;\;r_{k}(n)>0.}     (Lagrange's four-square theorem).

r2(n)=4dn(4d),{\displaystyle r_{2}(n)=4\sum _{d\mid n}\left({\frac {-4}{d}}\right),}[20]

where theKronecker symbol has the values

(4n)={+1if n1(mod4)1if n3(mod4)0if n is even.{\displaystyle \left({\frac {-4}{n}}\right)={\begin{cases}+1&{\text{if }}n\equiv 1{\pmod {4}}\\-1&{\text{if }}n\equiv 3{\pmod {4}}\\\;\;\;0&{\text{if }}n{\text{ is even}}.\\\end{cases}}}

There is a formula forr3 in the section onclass numbers below.r4(n)=84ddnd=8(2+(1)n)2ddnd={8σ(n)if n is odd 24σ(n2ν)if n is even ,{\displaystyle r_{4}(n)=8\sum _{\stackrel {d\mid n}{4\,\nmid \,d}}d=8(2+(-1)^{n})\sum _{\stackrel {d\mid n}{2\,\nmid \,d}}d={\begin{cases}8\sigma (n)&{\text{if }}n{\text{ is odd }}\\24\sigma \left({\frac {n}{2^{\nu }}}\right)&{\text{if }}n{\text{ is even }}\end{cases}},}whereν =ν2(n).    [21][22][23]r6(n)=16dnχ(nd)d24dnχ(d)d2,{\displaystyle r_{6}(n)=16\sum _{d\mid n}\chi \left({\frac {n}{d}}\right)d^{2}-4\sum _{d\mid n}\chi (d)d^{2},}whereχ(n)=(4n).{\displaystyle \chi (n)=\left({\frac {-4}{n}}\right).}[24]

Define the functionσk*(n) as[25]σk(n)=(1)ndn(1)ddk={dndk=σk(n)if n is odd 2ddndk2ddndkif n is even.{\displaystyle \sigma _{k}^{*}(n)=(-1)^{n}\sum _{d\mid n}(-1)^{d}d^{k}={\begin{cases}\sum _{d\mid n}d^{k}=\sigma _{k}(n)&{\text{if }}n{\text{ is odd }}\\\sum _{\stackrel {d\mid n}{2\,\mid \,d}}d^{k}-\sum _{\stackrel {d\mid n}{2\,\nmid \,d}}d^{k}&{\text{if }}n{\text{ is even}}.\end{cases}}}

That is, ifn is odd,σk*(n) is the sum of thekth powers of the divisors ofn, that is,σk(n), and ifn is even it is the sum of thekth powers of the even divisors ofn minus the sum of thekth powers of the odd divisors ofn.

r8(n)=16σ3(n).{\displaystyle r_{8}(n)=16\sigma _{3}^{*}(n).}    [24][26]

Adopt the convention that Ramanujan'sτ(x) = 0 ifx isnot an integer.

r24(n)=16691σ11(n)+128691{(1)n1259τ(n)512τ(n2)}{\displaystyle r_{24}(n)={\frac {16}{691}}\sigma _{11}^{*}(n)+{\frac {128}{691}}\left\{(-1)^{n-1}259\tau (n)-512\tau \left({\frac {n}{2}}\right)\right\}}    [27]

Divisor sum convolutions

[edit]

Here "convolution" does not mean "Dirichlet convolution" but instead refers to the formula for the coefficients of theproduct of two power series:

(n=0anxn)(n=0bnxn)=i=0j=0aibjxi+j=n=0(i=0naibni)xn=n=0cnxn.{\displaystyle \left(\sum _{n=0}^{\infty }a_{n}x^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}x^{n}\right)=\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}x^{i+j}=\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)x^{n}=\sum _{n=0}^{\infty }c_{n}x^{n}.}

The sequencecn=i=0naibni{\displaystyle c_{n}=\sum _{i=0}^{n}a_{i}b_{n-i}} is called theconvolution or theCauchy product of the sequencesan andbn.
These formulas may be proved analytically (seeEisenstein series) or by elementary methods.[28]

σ3(n)=15{6nσ1(n)σ1(n)+120<k<nσ1(k)σ1(nk)}.{\displaystyle \sigma _{3}(n)={\frac {1}{5}}\left\{6n\sigma _{1}(n)-\sigma _{1}(n)+12\sum _{0<k<n}\sigma _{1}(k)\sigma _{1}(n-k)\right\}.}    [29]
σ5(n)=121{10(3n1)σ3(n)+σ1(n)+2400<k<nσ1(k)σ3(nk)}.{\displaystyle \sigma _{5}(n)={\frac {1}{21}}\left\{10(3n-1)\sigma _{3}(n)+\sigma _{1}(n)+240\sum _{0<k<n}\sigma _{1}(k)\sigma _{3}(n-k)\right\}.}    [30]
σ7(n)=120{21(2n1)σ5(n)σ1(n)+5040<k<nσ1(k)σ5(nk)}=σ3(n)+1200<k<nσ3(k)σ3(nk).{\displaystyle {\begin{aligned}\sigma _{7}(n)&={\frac {1}{20}}\left\{21(2n-1)\sigma _{5}(n)-\sigma _{1}(n)+504\sum _{0<k<n}\sigma _{1}(k)\sigma _{5}(n-k)\right\}\\&=\sigma _{3}(n)+120\sum _{0<k<n}\sigma _{3}(k)\sigma _{3}(n-k).\end{aligned}}}    [30][31]
σ9(n)=111{10(3n2)σ7(n)+σ1(n)+4800<k<nσ1(k)σ7(nk)}=111{21σ5(n)10σ3(n)+50400<k<nσ3(k)σ5(nk)}.{\displaystyle {\begin{aligned}\sigma _{9}(n)&={\frac {1}{11}}\left\{10(3n-2)\sigma _{7}(n)+\sigma _{1}(n)+480\sum _{0<k<n}\sigma _{1}(k)\sigma _{7}(n-k)\right\}\\&={\frac {1}{11}}\left\{21\sigma _{5}(n)-10\sigma _{3}(n)+5040\sum _{0<k<n}\sigma _{3}(k)\sigma _{5}(n-k)\right\}.\end{aligned}}}    [29][32]
τ(n)=65756σ11(n)+691756σ5(n)69130<k<nσ5(k)σ5(nk),{\displaystyle \tau (n)={\frac {65}{756}}\sigma _{11}(n)+{\frac {691}{756}}\sigma _{5}(n)-{\frac {691}{3}}\sum _{0<k<n}\sigma _{5}(k)\sigma _{5}(n-k),}     whereτ(n) is Ramanujan's function.    [33][34]

Sinceσk(n) (for natural numberk) andτ(n) are integers, the above formulas can be used to prove congruences[35] for the functions. SeeRamanujan tau function for some examples.

Extend the domain of the partition function by settingp(0) = 1.

p(n)=1n1knσ(k)p(nk).{\displaystyle p(n)={\frac {1}{n}}\sum _{1\leq k\leq n}\sigma (k)p(n-k).}    [36]   This recurrence can be used to computep(n).

Class number related

[edit]

Peter Gustav Lejeune Dirichlet discovered formulas that relate the class numberh ofquadratic number fields to the Jacobi symbol.[37]

An integerD is called afundamental discriminant if it is thediscriminant of a quadratic number field. This is equivalent toD ≠ 1 and either a)D issquarefree andD ≡ 1 (mod 4) or b)D ≡ 0 (mod 4),D/4 is squarefree, andD/4 ≡ 2 or 3 (mod 4).[38]

Extend the Jacobi symbol to accept even numbers in the "denominator" by defining theKronecker symbol:(a2)={0 if a is even(1)a218 if a is odd. {\displaystyle \left({\frac {a}{2}}\right)={\begin{cases}\;\;\,0&{\text{ if }}a{\text{ is even}}\\(-1)^{\frac {a^{2}-1}{8}}&{\text{ if }}a{\text{ is odd. }}\end{cases}}}

Then ifD < −4 is a fundamental discriminant[39][40]h(D)=1Dr=1|D|r(Dr)=12(D2)r=1|D|/2(Dr).{\displaystyle {\begin{aligned}h(D)&={\frac {1}{D}}\sum _{r=1}^{|D|}r\left({\frac {D}{r}}\right)\\&={\frac {1}{2-\left({\tfrac {D}{2}}\right)}}\sum _{r=1}^{|D|/2}\left({\frac {D}{r}}\right).\end{aligned}}}

There is also a formula relatingr3 andh. Again, letD be a fundamental discriminant,D < −4. Then[41]r3(|D|)=12(1(D2))h(D).{\displaystyle r_{3}(|D|)=12\left(1-\left({\frac {D}{2}}\right)\right)h(D).}

Prime-count related

[edit]

LetHn=1+12+13++1n{\displaystyle H_{n}=1+{\frac {1}{2}}+{\frac {1}{3}}+\cdots +{\frac {1}{n}}}   be thenthharmonic number. Then

σ(n)Hn+eHnlogHn{\displaystyle \sigma (n)\leq H_{n}+e^{H_{n}}\log H_{n}}   is true for every natural numbern if and only if theRiemann hypothesis is true.    [42]

The Riemann hypothesis is also equivalent to the statement that, for alln > 5040,σ(n)<eγnloglogn{\displaystyle \sigma (n)<e^{\gamma }n\log \log n} (where γ is theEuler–Mascheroni constant). This isRobin's theorem.

pνp(n)=Ω(n).{\displaystyle \sum _{p}\nu _{p}(n)=\Omega (n).}
ψ(x)=nxΛ(n).{\displaystyle \psi (x)=\sum _{n\leq x}\Lambda (n).}    [43]
Π(x)=nxΛ(n)logn.{\displaystyle \Pi (x)=\sum _{n\leq x}{\frac {\Lambda (n)}{\log n}}.}    [44]
eθ(x)=pxp.{\displaystyle e^{\theta (x)}=\prod _{p\leq x}p.}    [45]
eψ(x)=lcm[1,2,,x].{\displaystyle e^{\psi (x)}=\operatorname {lcm} [1,2,\dots ,\lfloor x\rfloor ].}    [46]

Menon's identity

[edit]

In 1965P Kesava Menon proved[47]gcd(k,n)=11kngcd(k1,n)=φ(n)d(n).{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\gcd(k-1,n)=\varphi (n)d(n).}

This has been generalized by a number of mathematicians. For example,

In fact, iff is any arithmetical function[51][52]gcd(k,n)=11knf(gcd(k1,n))=φ(n)dn(μf)(d)φ(d),{\displaystyle \sum _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}f(\gcd(k-1,n))=\varphi (n)\sum _{d\mid n}{\frac {(\mu *f)(d)}{\varphi (d)}},}where{\displaystyle *} stands for Dirichlet convolution.

Miscellaneous

[edit]

Letm andn be distinct, odd, and positive. Then the Jacobi symbol satisfies the law ofquadratic reciprocity:(mn)(nm)=(1)(m1)(n1)/4.{\displaystyle \left({\frac {m}{n}}\right)\left({\frac {n}{m}}\right)=(-1)^{(m-1)(n-1)/4}.}

LetD(n) be the arithmetic derivative. Then the logarithmic derivativeD(n)n=p primepnvp(n)p.{\displaystyle {\frac {D(n)}{n}}=\sum _{\stackrel {p\mid n}{p{\text{ prime}}}}{\frac {v_{p}(n)}{p}}.} SeeArithmetic derivative for details.

Letλ(n) be Liouville's function. Then

|λ(n)|μ(n)=λ(n)|μ(n)|=μ(n),{\displaystyle |\lambda (n)|\mu (n)=\lambda (n)|\mu (n)|=\mu (n),}     and
λ(n)μ(n)=|μ(n)|=μ2(n).{\displaystyle \lambda (n)\mu (n)=|\mu (n)|=\mu ^{2}(n).}    

Letλ(n) be Carmichael's function. Then

λ(n)ϕ(n).{\displaystyle \lambda (n)\mid \phi (n).}     Further,
λ(n)=ϕ(n) if and only if n={1,2,4;3,5,7,9,11, (that is, pk, where p is an odd prime);6,10,14,18, (that is, 2pk, where p is an odd prime).{\displaystyle \lambda (n)=\phi (n){\text{ if and only if }}n={\begin{cases}1,2,4;\\3,5,7,9,11,\ldots {\text{ (that is, }}p^{k}{\text{, where }}p{\text{ is an odd prime)}};\\6,10,14,18,\ldots {\text{ (that is, }}2p^{k}{\text{, where }}p{\text{ is an odd prime)}}.\end{cases}}}

SeeMultiplicative group of integers modulo n andPrimitive root modulo n

2ω(n)d(n)2Ω(n).{\displaystyle 2^{\omega (n)}\leq d(n)\leq 2^{\Omega (n)}.}    [53][54]
6π2<ϕ(n)σ(n)n2<1.{\displaystyle {\frac {6}{\pi ^{2}}}<{\frac {\phi (n)\sigma (n)}{n^{2}}}<1.}    [55]
cq(n)=μ(qgcd(q,n))ϕ(qgcd(q,n))ϕ(q)=δgcd(q,n)μ(qδ)δ.{\displaystyle {\begin{aligned}c_{q}(n)&={\frac {\mu \left({\frac {q}{\gcd(q,n)}}\right)}{\phi \left({\frac {q}{\gcd(q,n)}}\right)}}\phi (q)\\&=\sum _{\delta \mid \gcd(q,n)}\mu \left({\frac {q}{\delta }}\right)\delta .\end{aligned}}}    [56]     Note that  ϕ(q)=δqμ(qδ)δ.{\displaystyle \phi (q)=\sum _{\delta \mid q}\mu \left({\frac {q}{\delta }}\right)\delta .}    [57]
cq(1)=μ(q).{\displaystyle c_{q}(1)=\mu (q).}
cq(q)=ϕ(q).{\displaystyle c_{q}(q)=\phi (q).}
δnd3(δ)=(δnd(δ))2.{\displaystyle \sum _{\delta \mid n}d^{3}(\delta )=\left(\sum _{\delta \mid n}d(\delta )\right)^{2}.}    [58]   Compare this with13 + 23 + 33 + ... +n3 = (1 + 2 + 3 + ... +n)2
d(uv)=δgcd(u,v)μ(δ)d(uδ)d(vδ).{\displaystyle d(uv)=\sum _{\delta \mid \gcd(u,v)}\mu (\delta )d\left({\frac {u}{\delta }}\right)d\left({\frac {v}{\delta }}\right).}    [59]
σk(u)σk(v)=δgcd(u,v)δkσk(uvδ2).{\displaystyle \sigma _{k}(u)\sigma _{k}(v)=\sum _{\delta \mid \gcd(u,v)}\delta ^{k}\sigma _{k}\left({\frac {uv}{\delta ^{2}}}\right).}    [60]
τ(u)τ(v)=δgcd(u,v)δ11τ(uvδ2),{\displaystyle \tau (u)\tau (v)=\sum _{\delta \mid \gcd(u,v)}\delta ^{11}\tau \left({\frac {uv}{\delta ^{2}}}\right),}     whereτ(n) is Ramanujan's function.    [61]

First 100 values of some arithmetic functions

[edit]
nfactorizationφ(n)ω(n)Ω(n)λ(n)μ(n)Λ(n)π(n)σ0(n)σ1(n)σ2(n)r2(n)r3(n)r4(n)
111001100111468
22111−1−10.69123541224
33211−1−11.10224100832
422212100.69237214624
55411−1−11.613262682448
62 · 322211034125002496
77611−1−11.95428500064
823413−100.6944158541224
932612101.10431391430104
102 · 54221104418130824144
11111011−1−12.40521212202496
1222 · 3423−10056282100896
13131211−1−12.566214170824112
142 · 76221106424250048192
153 · 5822110642426000192
1624814100.6965313414624
17171611−1−12.837218290848144
182 · 32623−1007639455436312
19191811−1−12.948220362024160
2022 · 5823−1008642546824144
213 · 712221108432500048256
222 · 1110221108436610024288
23232211−1−13.14922453000192
2423 · 3824100986085002496
25522012101.6193316511230248
262 · 1312221109442850872336
27331813−101.109440820032320
2822 · 71223−1009656105000192
29292811−1−13.3710230842872240
302 · 3 · 5833−1−10108721300048576
31313011−1−13.431123296200256
32251615−100.6911663136541224
333 · 112022110114481220048384
342 · 171622110114541450848432
355 · 72422110114481300048384
3622 · 321224100119911911430312
37373611−1−13.61122381370824304
382 · 191822110124601810072480
393 · 13242211012456170000448
4023 · 51624100128902210824144
41414011−1−13.71132421682896336
422 · 3 · 71233−1−10138962500048768
43434211−1−13.76142441850024352
4422 · 112023−100146842562024288
4532 · 52423−100146782366872624
462 · 232222110144722650048576
47474611−1−13.8515248221000384
4824 · 31625−100151012434100896
49724212101.95153572451454456
502 · 522023−1001569332551284744
513 · 173222110154722900048576
5222 · 132423−100156983570824336
53535211−1−13.97162542810872432
542 · 3318241001681204100096960
555 · 11402211016472317200576
5623 · 724241001681204250048192
573 · 193622110164803620048640
582 · 292822110164904210824720
59595811−1−14.08172603482072480
6022 · 3 · 516341001712168546000576
61616011−1−14.11182623722872496
622 · 313022110184964810096768
6332 · 73623−100186104455000832
64263216100.6918712754614624
655 · 1348221101848444201696672
662 · 3 · 112033−1−1018814461000961152
67676611−1−14.20192684490024544
6822 · 173223−1001961266090848432
693 · 234422110194965300096768
702 · 5 · 72433−1−1019814465000481152
71717011−1−14.2620272504200576
7223 · 322425−10020121957735436312
73737211−1−14.29212745330848592
742 · 37362211021411468508120912
753 · 524023−1002161246510056992
7622 · 193623−1002161407602024480
777 · 116022110214966100096768
782 · 3 · 132433−1−1021816885000481344
79797811−1−14.3722280624200640
8024 · 53225−10022101868866824144
81345414101.1022512173814102968
822 · 41402211022412684108481008
83838211−1−14.42232846890072672
8422 · 3 · 72434100231222410500048768
855 · 17642211023410875401648864
862 · 434222110234132925001201056
873 · 295622110234120842000960
8823 · 11402410023818010370024288
89898811−1−14.492429079228144720
902 · 32 · 5243410024122341183081201872
917 · 1372221102441128500048896
9222 · 234423−1002461681113000576
933 · 31602211024412896200481024
942 · 474622110244144110500961152
955 · 197222110244120941200960
9625 · 3322610024122521365002496
97979611−1−14.57252989410848784
982 · 724223−1002561711225541081368
9932 · 116023−100256156111020721248
10022 · 524024100259217136711230744
nfactorizationφ(n)ω(n)Ω(n)𝜆(n)𝜇(n)Λ(n)π(n)σ0(n)σ1(n)σ2(n)r2(n)r3(n)r4(n)

Notes

[edit]
  1. ^Long (1972, p. 151)
  2. ^Pettofrezzo & Byrkit (1970, p. 58)
  3. ^Niven & Zuckerman, 4.2.
  4. ^Nagell, I.9.
  5. ^Bateman & Diamond, 2.1.
  6. ^Hardy & Wright, intro. to Ch. XVI
  7. ^Hardy,Ramanujan, § 10.2
  8. ^Apostol,Modular Functions ..., § 1.15, Ch. 4, and ch. 6
  9. ^Hardy & Wright, §§ 18.1–18.2
  10. ^Gérald Tenenbaum (1995).Introduction to Analytic and Probabilistic Number Theory. Cambridge studies in advanced mathematics. Vol. 46.Cambridge University Press. pp. 36–55.ISBN 0-521-41261-7.
  11. ^Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.
  12. ^Hardy & Wright, Thm. 263
  13. ^Hardy & Wright, Thm. 63
  14. ^see references atJordan's totient function
  15. ^Holden et al. in external links The formula is Gegenbauer's
  16. ^Hardy & Wright, Thm. 288–290
  17. ^Dineva in external links, prop. 4
  18. ^Hardy & Wright, Thm. 264
  19. ^Hardy & Wright, Thm. 296
  20. ^Hardy & Wright, Thm. 278
  21. ^Hardy & Wright, Thm. 386
  22. ^Hardy,Ramanujan, eqs 9.1.2, 9.1.3
  23. ^Koblitz, Ex. III.5.2
  24. ^abHardy & Wright, § 20.13
  25. ^Hardy,Ramanujan, § 9.7
  26. ^Hardy,Ramanujan, § 9.13
  27. ^Hardy,Ramanujan, § 9.17
  28. ^Williams, ch. 13; Huard, et al. (external links).
  29. ^abRamanujan,On Certain Arithmetical Functions, Table IV;Papers, p. 146
  30. ^abKoblitz, ex. III.2.8
  31. ^Koblitz, ex. III.2.3
  32. ^Koblitz, ex. III.2.2
  33. ^Koblitz, ex. III.2.4
  34. ^Apostol,Modular Functions ..., Ex. 6.10
  35. ^Apostol,Modular Functions..., Ch. 6 Ex. 10
  36. ^G.H. Hardy, S. Ramannujan,Asymptotic Formulæ in Combinatory Analysis, § 1.3; in Ramannujan,Papers p. 279
  37. ^Landau, p. 168, credits Gauss as well as Dirichlet
  38. ^Cohen, Def. 5.1.2
  39. ^Cohen, Corr. 5.3.13
  40. ^see Edwards, § 9.5 exercises for more complicated formulas.
  41. ^Cohen, Prop 5.3.10
  42. ^SeeDivisor function.
  43. ^Hardy & Wright, eq. 22.1.2
  44. ^Seeprime-counting functions.
  45. ^Hardy & Wright, eq. 22.1.1
  46. ^Hardy & Wright, eq. 22.1.3
  47. ^László Tóth,Menon's Identity and Arithmetical Sums ..., eq. 1
  48. ^Tóth, eq. 5
  49. ^Tóth, eq. 3
  50. ^Tóth, eq. 35
  51. ^Tóth, eq. 2
  52. ^Tóth states that Menon proved this for multiplicativef in 1965 and V. Sita Ramaiah for generalf.
  53. ^HardyRamanujan, eq. 3.10.3
  54. ^Hardy & Wright, § 22.13
  55. ^Hardy & Wright, Thm. 329
  56. ^Hardy & Wright, Thms. 271, 272
  57. ^Hardy & Wright, eq. 16.3.1
  58. ^Ramanujan,Some Formulæ in the Analytic Theory of Numbers, eq. (C);Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.
  59. ^Ramanujan,Some Formulæ in the Analytic Theory of Numbers, eq. (F);Papers p. 134
  60. ^Apostol,Modular Functions ..., ch. 6 eq. 4
  61. ^Apostol,Modular Functions ..., ch. 6 eq. 3

References

[edit]

Further reading

[edit]
  • Schwarz, Wolfgang; Spilker, Jürgen (1994),Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series, vol. 184,Cambridge University Press,ISBN 0-521-42725-8,Zbl 0807.11001

External links

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Arithmetic_function&oldid=1323943414"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp