This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed. Find sources: "Areography" – news ·newspapers ·books ·scholar ·JSTOR(April 2012) (Learn how and when to remove this message) |

Areography, also known as thegeography of Mars, is a subfield ofplanetary science that entails the delineation and characterization of regions onMars.[1][2][3] Areography is mainly focused on what is calledphysical geography on Earth; that is the distribution of physical features across Mars and theircartographic representations. In April 2023,The New York Times reported an updated global map of Mars based on images from theHope spacecraft.[4] A related, but much more detailed, global Mars map was released byNASA on 16 April 2023.[5]

The first detailed observations of Mars were from ground-basedtelescopes. The history of these observations are marked by theoppositions of Mars, when the planet is closest to Earth and hence is most easily visible, which occur every couple of years. Even more notable are theperihelic oppositions of Mars, when Mars is near itsperihelion and thus even closer to Earth; these occur at intervals of 15 or 17 Earth years.

In September 1877, (a perihelic opposition of Mars occurred on September 5),Italian astronomerGiovanni Schiaparelli published the first detailed map ofMars. These maps notably contained features he calledcanali ("channels"), that were later shown to be anoptical illusion. Thesecanali were supposedly long straight lines on the surface of Mars to which he gave names of famous rivers on Earth. His term was popularly mistranslated ascanals, and so started theMartian canal controversy.

Following these observations, it was a long-held belief that Mars contained vast seas and vegetation. It was not untilspacecraft visited the planet duringNASA'sMariner missions in the 1960s that these myths were dispelled. Some maps of Mars were made using the data from these missions, but it wasn't until theMars Global Surveyor mission, launched in 1996 and ending in late 2006, that complete, extremely detailed maps were obtained.
Cartography is the art, science, and technology of making maps.Geodesy is the science of measuring the shape, orientation, and gravity of Earth and, by extension, other planetary bodies.There are many established techniques specific to Earth that allow us to convert the 2D curved surface into 2D planes to facilitate mapping. To facilitate this on Mars,projections,coordinate systems, anddatums needed to be established. Today, theUnited States Geological Survey defines thirty cartographic quadrangles for the surface of Mars. These can be seen below.
On Earth, the zero elevation datum is based onsea level (thegeoid).Since Mars has no oceans and hence no 'sea level', it is convenient to define an arbitrary zero-elevation level or "vertical datum" for mapping the surface, calledareoid.[9]
The datum for Mars was defined initially in terms of a constant atmospheric pressure. From theMariner 9 mission up until 2001, this was chosen as 610.5 Pa (6.105 mbar), on the basis that below this pressure liquid water can never be stable (i.e., thetriple point of water is at this pressure). This value is only 0.6% of the pressure at sea level on Earth. Note that the choice of this value does not mean that liquid water does exist below this elevation, just that it could were the temperature to exceed 273.16 K (0.01 degrees C, 32.018 degrees F).[10]
In 2001,Mars Orbiter Laser Altimeter data led to a new convention of zero elevation defined as theequipotential surface (gravitational plus rotational) whose average value at the equator is equal to the mean radius of the planet.[11]
The origin of latitude is Mars's mean equator, defined perpendicularly to its mean axis of rotation, removing periodic wobbles.[12]

Mars's equator is defined by its rotation, but the location of itsprime meridian was specified, as is Earth's, by choice of an arbitrary point which later observers accepted. The German astronomersWilhelm Beer andJohann Heinrich Mädler selected a small circular feature in theSinus Meridiani ('Middle Bay' or 'Meridian Bay') as a reference point when they produced the first systematic chart of Mars features in 1830–1832. In 1877, their choice was adopted as the prime meridian by the Italian astronomerGiovanni Schiaparelli when he began work on his notable maps of Mars. In 1909ephemeris-makers decided that it was more important to maintain continuity of the ephemerides as a guide to observations and this definition was "virtually abandoned".[13][14]
After theMariner spacecraft provided extensive imagery of Mars, in 1972 the Mariner 9 Geodesy / Cartography Group proposed that the prime meridian pass through the center of a small 500 m diameter crater, namedAiry-0, located in Sinus Meridiani along the meridian line of Beer and Mädler, thus defining 0.0° longitude with a precision of 0.001°.[13] This model used the planetographiccontrol point network developed byMerton Davies of theRAND Corporation.[15]
As radiometric techniques increased the precision with which objects could be located on the surface of Mars, the center of a 500 m circular crater was considered to be insufficiently precise for exact measurements. TheIAU Working Group on Cartographic Coordinates and Rotational Elements, therefore, recommended setting the longitude of theViking 1 lander – for which there was extensive radiometric tracking data – as marking the standard longitude of 47.95137° west. This definition maintains the position of the center ofAiry-0 at 0° longitude, within the tolerance of current cartographic uncertainties.[16]




Across a wholeplanet, generalisation is not possible, and the geography of Mars varies considerably. Thedichotomy ofMartian topography is striking: northern plains flattened by lava flows contrast with the southern highlands, pitted and cratered by ancient impacts. The surface of Mars as seen from Earth is consequently divided into two kinds of areas, with differingalbedo.
The paler plains covered with dust and sand rich in reddish iron oxides were once thought of as Martian 'continents' and given names likeArabia Terra (land of Arabia) orAmazonis Planitia (Amazonian plain). The dark features were thought to be seas, hence their namesMare Erythraeum,Mare Sirenum andAurorae Sinus. The largest dark feature seen from Earth isSyrtis Major Planum.
Theshield volcano,Olympus Mons (Mount Olympus), rises 22 km above the surrounding volcanic plains, and is the highest known mountain on any planet in theSolar System.[10] It is in a vast upland region calledTharsis, which contains several large volcanos. Seelist of mountains on Mars. The Tharsis region of Mars also has the Solar System's largest canyon system,Valles Marineris or theMariner Valley, which is 4,000 km long and 7 km deep. Mars is also scarred by countlessimpact craters. The largest of these is theHellas impact basin. Seelist of craters on Mars.
Mars has two permanent polar ice caps, the northern one located atPlanum Boreum and the southern one atPlanum Australe.
The difference between Mars's highest and lowest points is nearly 30 km (from the top of Olympus Mons at an altitude of 21.2 km to Badwater Crater[1] at the bottom of the Hellas impact basin at an altitude of 8.2 km below the datum). In comparison, the difference between Earth's highest and lowest points (Mount Everest and theMariana Trench) is only 19.7 km. Combined with the planets' different radii, this means Mars is nearly three times "rougher" than Earth.
TheInternational Astronomical Union'sWorking Group for Planetary System Nomenclature is responsible for naming Martian surface features.
Observers of Martian topography will notice a dichotomy between the northern and southern hemispheres. Most of the northern hemisphere is flat, with few impact craters, and lies below the conventional 'zero elevation' level. In contrast, the southern hemisphere is mountains and highlands, mostly well above zero elevation. The two hemispheres differ in elevation by 1 to 3 km. The border separating the two areas is very interesting to geologists.
One distinctive feature is thefretted terrain.[17] It contains mesas, knobs, and flat-floored valleys having walls about a mile high. Around many of the mesas and knobs arelobate debris aprons that have been shown to be rock-covered glaciers.[18]
Other interesting features are the largeriver valleys andoutflow channels that cut through the dichotomy.[19][20][21]
The northern lowlands comprise about one-third of the surface of Mars and are relatively flat, with occasional impact craters. The other two-thirds of the Martian surface are the southern highlands. The difference in elevation between the hemispheres is dramatic. Because of the density of impact craters, scientists believe the southern hemisphere to be far older than the northern plains.[22] Much of heavily cratered southern highlands date back to the period of heavy bombardment, theNoachian.
Multiple hypotheses have been proposed to explain the differences. The three most commonly accepted are a single mega-impact, multiple impacts, and endogenic processes such as mantle convection.[19] Both impact-related hypotheses involve processes that could have occurred before the end of the primordial bombardment, implying that the crustal dichotomy has its origins early in the history of Mars.
The giant impact hypothesis, originally proposed in the early 1980s, was met with skepticism due to the impact area's non-radial (elliptical) shape, where a circular pattern would be stronger support for impact by larger object(s). But a 2008 study[23] provided additional research that supports a single giant impact. Using geologic data, researchers found support for the single impact of a large object hitting Mars at approximately a 45-degree angle. Additional evidence analyzing Martian rock chemistry for post-impact upwelling of mantle material would further support the giant impact theory.
Although better remembered for mapping theMoon starting in 1830,Johann Heinrich Mädler andWilhelm Beer were the first "areographers". They started off by establishing once and for all that most of the surface features were permanent, and pinned down Mars's rotation period. In 1840, Mädler combined ten years of observations and drew the first map of Mars ever made. Rather than giving names to the various markings they mapped, Beer and Mädler simply designated them with letters; Meridian Bay (Sinus Meridiani) was thus feature "a".
Over the next twenty years or so, as instruments improved and the number of observers also increased, various Martian features acquired a hodge-podge of names. To give a couple of examples,Solis Lacus was known as the "Oculus" (the Eye), and Syrtis Major was usually known as the "Hourglass Sea" or the "Scorpion". In 1858, it was also dubbed the "Atlantic Canale" by the Jesuit astronomerAngelo Secchi. Secchi commented that it "seems to play the role of the Atlantic which, on Earth, separates the Old Continent from the New;" this was the first time the fatefulcanale, which in Italian can mean either "channel" or "canal", had been applied to Mars.
In 1867,Richard Anthony Proctor drew up a map of Mars. It was based, somewhat crudely, on the Rev.William Rutter Dawes's earlier drawings of 1865, then the best ones available. Proctor explained his system of nomenclature by saying, "I have applied to the different features the names of those observers who have studied the physical peculiarities presented by Mars." Here are some of his names, paired with those later used bySchiaparelli in his Martian map created between 1877 and 1886.[24] Schiaparelli's names were generally adopted and are the names actually used today:
| Proctor nomenclature | Schiaparelli nomenclature |
|---|---|
| Kaiser Sea | Syrtis Major |
| Lockyer Land | Hellas Planitia |
| Main Sea | Lacus Moeris |
| Herschel II Strait | Sinus Sabaeus |
| Dawes Continent | Aeria and Arabia |
| De La Rue Ocean | Mare Erythraeum |
| Lockyer Sea | Solis Lacus |
| Dawes Sea | Tithonius Lacus |
| Madler Continent | Chryse Planitia,Ophir,Tharsis |
| Maraldi Sea | Maria Sirenum andCimmerium |
| Secchi Continent | Memnonia |
| Hooke Sea | Mare Tyrrhenum |
| Cassini Land | Ausonia |
| Herschel I Continent | Zephyria,Aeolis,Aethiopis |
| Hind Land | Libya |
Proctor's nomenclature has often been criticized, mainly because so many of his names honored English astronomers, but also because he used many names more than once. In particular,Dawes appeared no fewer thansix times (Dawes Ocean, Dawes Continent, Dawes Sea, Dawes Strait, Dawes Isle, and Dawes Forked Bay). Even so, Proctor's names are not without charm, and for all their shortcomings they were a foundation on which later astronomers would improve.

Today, names of Martian features derive from a number of sources, but the names of the large features are derived primarily from the maps of Mars made in 1886 by the Italian astronomerGiovanni Schiaparelli. Schiaparelli named the larger features of Mars primarily using names fromGreek mythology and to a lesser extent theBible. Mars's largealbedo features retain many of the older names, but are often updated to reflect new knowledge of the nature of the features. For example, 'Nix Olympica' (the snows of Olympus) has becomeOlympus Mons (Mount Olympus).
Large Martian craters are named after important scientists and science fiction writers; smaller ones are named after towns and villages on Earth.
Various landforms studied by theMars Exploration Rovers are given temporary names or nicknames to identify them during exploration and investigation. However, it is hoped[attribution needed] that theInternational Astronomical Union will make permanent the names of certain major features, such as theColumbia Hills, which were named after the seven astronauts who died in theSpace ShuttleColumbia disaster.