Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Arcsine distribution

From Wikipedia, the free encyclopedia
Type of probability distribution
Arcsine
Probability density function
Probability density function for the arcsine distribution
Cumulative distribution function
Cumulative distribution function for the arcsine distribution
Parametersnone
Supportx(0,1){\displaystyle x\in (0,1)}
PDFf(x)=1πx(1x){\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}}
CDFF(x)=2πarcsin(x){\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)}
QuantileF1(x)=sin(πx2)2{\displaystyle F^{-1}(x)=\sin \left({\frac {\pi x}{2}}\right)^{2}}
Mean12{\displaystyle {\frac {1}{2}}}
Median12{\displaystyle {\frac {1}{2}}}
Modex{0,1}{\displaystyle x\in \{0,1\}}
Variance18{\displaystyle {\tfrac {1}{8}}}
Skewness0{\displaystyle 0}
Excess kurtosis32{\displaystyle -{\tfrac {3}{2}}}
Entropylogπ4{\displaystyle \log {\tfrac {\pi }{4}}}
MGF1+k=1(r=0k12r+12r+2)tkk!{\displaystyle 1+\sum _{k=1}^{\infty }\left(\prod _{r=0}^{k-1}{\frac {2r+1}{2r+2}}\right){\frac {t^{k}}{k!}}}
CFeit2J0(t2){\displaystyle e^{i{\frac {t}{2}}}J_{0}({\frac {t}{2}})}

Inprobability theory, thearcsine distribution is theprobability distribution whosecumulative distribution function involves thearcsine and thesquare root:

F(x)=2πarcsin(x)=arcsin(2x1)π+12{\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {x}}\right)={\frac {\arcsin(2x-1)}{\pi }}+{\frac {1}{2}}}

for 0 ≤ x ≤ 1, and whoseprobability density function is

f(x)=1πx(1x){\displaystyle f(x)={\frac {1}{\pi {\sqrt {x(1-x)}}}}}

on (0, 1). The standard arcsine distribution is a special case of thebeta distribution withα = β = 1/2. That is, ifX{\displaystyle X} is an arcsine-distributed random variable, thenXBeta(12,12){\displaystyle X\sim {\rm {Beta}}{\bigl (}{\tfrac {1}{2}},{\tfrac {1}{2}}{\bigr )}}. By extension, the arcsine distribution is a special case of thePearson type I distribution.

The arcsine distribution appears in theLévy arcsine law, in theErdős arcsine law, and as theJeffreys prior for the probability of success of aBernoulli trial.[1][2] The arcsine probability density is a distribution that appears in several random-walk fundamental theorems. In a fair coin tossrandom walk, the probability for the time of the last visit to the origin is distributed as an (U-shaped)arcsine distribution.[3][4] In a two-player fair-coin-toss game, a player is said to be in the lead if the random walk (that started at the origin) is above the origin. The most probable number of times that a given player will be in the lead, in a game of length 2N, is notN. On the contrary,N is the least likely number of times that the player will be in the lead. The most likely number of times in the lead is 0 or 2N (following the arcsine distribution).

Generalization

[edit]
Arcsine – bounded support
Parameters<a<b<{\displaystyle -\infty <a<b<\infty \,}
Supportx(a,b){\displaystyle x\in (a,b)}
PDFf(x)=1π(xa)(bx){\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}}
CDFF(x)=2πarcsin(xaba){\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)}
QuantileF1(x)=(ba)sin(πx2)2+a{\displaystyle F^{-1}(x)=\left(b-a\right)\sin \left({\frac {\pi x}{2}}\right)^{2}+a}
Meana+b2{\displaystyle {\frac {a+b}{2}}}
Mediana+b2{\displaystyle {\frac {a+b}{2}}}
Modexa,b{\displaystyle x\in {a,b}}
Variance18(ba)2{\displaystyle {\tfrac {1}{8}}(b-a)^{2}}
Skewness0{\displaystyle 0}
Excess kurtosis32{\displaystyle -{\tfrac {3}{2}}}
Entropylog(πba4){\displaystyle \log \left(\pi {\frac {b-a}{4}}\right)}
CFeitb+a2J0(ba2t){\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)}

Arbitrary bounded support

[edit]

The distribution can be expanded to include any bounded support froma ≤ x ≤ b by a simple transformation

F(x)=2πarcsin(xaba){\displaystyle F(x)={\frac {2}{\pi }}\arcsin \left({\sqrt {\frac {x-a}{b-a}}}\right)}

fora ≤ x ≤ b, and whoseprobability density function is

f(x)=1π(xa)(bx){\displaystyle f(x)={\frac {1}{\pi {\sqrt {(x-a)(b-x)}}}}}

on (ab).

Shape factor

[edit]

The generalized standard arcsine distribution on (0,1) with probability density function

f(x;α)=sinπαπxα(1x)α1{\displaystyle f(x;\alpha )={\frac {\sin \pi \alpha }{\pi }}x^{-\alpha }(1-x)^{\alpha -1}}

is also a special case of thebeta distribution with parametersBeta(1α,α){\displaystyle {\rm {Beta}}(1-\alpha ,\alpha )}.

Note that whenα=12{\displaystyle \alpha ={\tfrac {1}{2}}} the general arcsine distribution reduces to the standard distribution listed above.

Properties

[edit]

Characteristic function

[edit]

The characteristic function of the generalized arcsine distribution is a zero orderBessel function of the first kind, multiplied by a complex exponential, given byeitb+a2J0(ba2t){\displaystyle e^{it{\frac {b+a}{2}}}J_{0}({\frac {b-a}{2}}t)}. For the special case ofb=a{\displaystyle b=-a}, the characteristic function takes the form ofJ0(bt){\displaystyle J_{0}(bt)}.

Related distributions

[edit]

References

[edit]
  1. ^Overturf, Drew; et al. (2017).Investigation of beamforming patterns from volumetrically distributed phased arrays. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). pp. 817–822.doi:10.1109/MILCOM.2017.8170756.ISBN 978-1-5386-0595-0.
  2. ^Buchanan, K.; et al. (2020). "Null Beamsteering Using Distributed Arrays and Shared Aperture Distributions".IEEE Transactions on Antennas and Propagation.68 (7):5353–5364.Bibcode:2020ITAP...68.5353B.doi:10.1109/TAP.2020.2978887.
  3. ^Feller, William (1971).An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley.ISBN 978-0471257097.
  4. ^Feller, William (1968).An Introduction to Probability Theory and Its Applications. Vol. 1 (3rd ed.). Wiley.ISBN 978-0471257080.

Further reading

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Arcsine_distribution&oldid=1325674383"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp