For the parent molecule9,10-anthraquinone, seeanthraquinone
Structure proposed for the pigment carmine.
Anthraquinones (also known asanthraquinonoids) are a class of naturally occurring phenolic compounds based on the9,10-anthraquinone skeleton. They are widely used industrially and occur naturally.
A large industrial application of anthraquinones is for the production ofhydrogen peroxide.2-Ethyl-9,10-anthraquinone or a related alkyl derivative is used, rather than anthraquinone itself.[7]
Sodium 2-anthraquinonesulfonate (AMS) is a water-soluble anthraquinone derivative that was the first anthraquinone derivative discovered to have a catalytic effect in the alkaline pulping processes.[9]
The 9,10-anthraquinone skeleton occurs in many dyes, such asalizarin.[10] Important derivatives of 9,10-anthraquinone are 1-nitroanthraquinone, anthraquinone-1-sulfonic acid, and the dinitroanthraquinone.[11]
Selection ofanthraquinone dyes. From the left: C.I.Acid Blue 43 an "acid dye" for wool (also called "Acilan Saphirol SE"), C.I. Vat Violet 1, which is applied by transfer printing using sublimation, a blue colorant commonly used in gasoline, and C.I.Disperse Red 60.
Derivatives of 9,10-anthraquinone include drugs such as the anthracenediones and theanthracycline family ofchemotherapy drugs. The latter drugs are derived from the bacteriumStreptomyces peucetius, discovered in a soil sample near theAdriatic Sea. Drugs in the anthraquinone family include the prototypicaldaunorubicin,doxorubicin,mitoxantrone,losoxantrone, andpixantrone. Most of these drugs, with the notable exception of pixantrone, are extremely cardiotoxic, causing irreversiblecardiomyopathy, which can limit their practical usefulness incancer treatment.[11]
Soluble anthraquinones such as 9,10-anthraquinone-2,7-disulfonic acid are used as reactants inredox flow batteries, which provide electrical energy storage.[15]
^Brachmann, AO; Joyce, SA; Jenke-Kodama, H; Schwär, G; Clarke, DJ; Bode, HB (2007). "A type II polyketide synthase is responsible for anthraquinone biosynthesis inPhotorhabdus luminescens".ChemBioChem.8 (14):1721–8.doi:10.1002/cbic.200700300.PMID17722122.
^Stalman, M; Koskamp, AM; Luderer, R; Vernooy, JH; Wind, JC; Wullems, GJ; Croes, AF (2003). "Regulation of anthraquinone biosynthesis in cell cultures ofMorinda citrifolia".Journal of Plant Physiology.160 (6):607–14.doi:10.1078/0176-1617-00773.PMID12872482.
^Akinjogunla OJ, Yah CS, Eghafona NO, Ogbemudia FO (2010). "Antibacterial activity of leave extracts ofNymphaea lotus (Nymphaeaceae) on Methicillin resistantStaphylococcus aureus (MRSA) and Vancomycin resistantStaphylococcus aureus (VRSA) isolated from clinical samples".Annals of Biological Research.1 (2):174–184.
^Dapson, R. W.; Frank, M.; Penney, D. P.; Kiernan, J. A. (2007). "Revised procedures for the certification of carmine (C.I. 75470, Natural red 4) as a biological stain".Biotechnic & Histochemistry.82 (1):13–15.doi:10.1080/10520290701207364.PMID17510809.
^Campos-Martin, Jose M.; Blanco-Brieva, Gema; Fierro, Jose L. G. (2006). "Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process".Angewandte Chemie International Edition.45 (42):6962–6984.doi:10.1002/anie.200503779.PMID17039551.
^Panigrahi, G.K.; Suthar, M.K.; Verma, N.; Asthana, S.; Tripathi, A.; Gupta, S.K.; Saxena, J. K.; Raisuddin, S.; Das, M. (2015). "Investigation of the interaction of anthraquinones ofCassia occidentalis seeds with bovine serum albumin by molecular docking and spectroscopic analysis: Correlation to their in vitro cytotoxic potential".Food Research International.77:368–377.doi:10.1016/j.foodres.2015.08.022.
^Müller-Lissner, S. A. (1993). "Adverse Effects of Laxatives: Fact and Fiction".Pharmacology.47 (Suppl 1):138–145.doi:10.1159/000139853.PMID8234421.