Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Protein structure

From Wikipedia, the free encyclopedia
(Redirected fromAmino acid residues)
Three-dimensional arrangement of atoms in an amino acid-chain molecule

This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Protein structure" – news ·newspapers ·books ·scholar ·JSTOR
(May 2018) (Learn how and when to remove this message)
The image above contains clickable links
The image above contains clickable links
This diagram (which is interactive) ofprotein structure usesPCNA as an example. (PDB:1AXC​)

Protein structure is thethree-dimensional arrangement of atoms in anamino acid-chainmolecule.Proteins arepolymers – specificallypolypeptides – formed from sequences ofamino acids, which are themonomers of the polymer. A single amino acid monomer may also be called aresidue, which indicates a repeating unit of a polymer. Proteins form by amino acids undergoingcondensation reactions, in which the amino acids lose onewater molecule perreaction in order to attach to one another with apeptide bond. By convention, a chain under 30 amino acids is often identified as apeptide, rather than a protein.[1] To be able to perform their biological function, proteins fold into one or more specific spatial conformations driven by a number ofnon-covalent interactions, such ashydrogen bonding,ionic interactions,Van der Waals forces, andhydrophobic packing. To understand the functions of proteins at a molecular level, it is often necessary to determine theirthree-dimensional structure. This is the topic of the scientific field ofstructural biology, which employs techniques such asX-ray crystallography,NMR spectroscopy,cryo-electron microscopy (cryo-EM) anddual polarisation interferometry, to determine the structure of proteins.

Protein structures range in size from tens to several thousand amino acids.[2] By physical size, proteins are classified asnanoparticles, between 1–100 nm. Very largeprotein complexes can be formed fromprotein subunits. For example, many thousands ofactin molecules assemble into amicrofilament.

A protein usually undergoesreversiblestructural changes in performing its biological function. The alternative structures of the same protein are referred to as differentconformations, and transitions between them are calledconformational changes.

Levels of protein structure

[edit]

There are four distinct levels of protein structure.

Four levels of protein structure

Primary structure

[edit]
Main article:Protein primary structure

Theprimary structure of a protein refers to the sequence ofamino acids in the polypeptide chain. The primary structure is held together bypeptide bonds that are made during the process ofprotein biosynthesis. The two ends of thepolypeptide chain are referred to as thecarboxyl terminus (C-terminus) and theamino terminus (N-terminus) based on the nature of the free group on each extremity. Counting of residues always starts at the N-terminal end (NH2-group), which is the end where the amino group is not involved in a peptide bond. The primary structure of a protein is determined by thegene corresponding to the protein. A specific sequence ofnucleotides inDNA istranscribed intomRNA, which is read by theribosome in a process calledtranslation. The sequence of amino acids in insulin was discovered byFrederick Sanger, establishing that proteins have defining amino acid sequences.[3][4] The sequence of a protein is unique to that protein, and defines the structure and function of the protein. The sequence of a protein can be determined by methods such asEdman degradation ortandem mass spectrometry. Often, however, it is read directly from the sequence of the gene using thegenetic code. It is strictly recommended to use the words "amino acid residues" when discussing proteins because when a peptide bond is formed, awater molecule is lost, and therefore proteins are made up of amino acid residues.Post-translational modifications such asphosphorylations andglycosylations are usually also considered a part of the primary structure, and cannot be read from the gene. For example,insulin is composed of 51 amino acids in 2 chains. One chain has 31 amino acids, and the other has 20 amino acids.

Secondary structure

[edit]
An α-helix with hydrogen bonds (yellow dots)
Main article:Protein secondary structure

Secondary structure refers to highly regular local sub-structures on the actual polypeptide backbone chain. Two main types of secondary structure, theα-helix and theβ-strand orβ-sheets, were suggested in 1951 byLinus Pauling.[5] These secondary structures are defined by patterns ofhydrogen bonds between the main-chain peptide groups. They have a regular geometry, being constrained to specific values of the dihedral angles ψ and φ on theRamachandran plot. Both the α-helix and the β-sheet represent a way of saturating all the hydrogen bond donors and acceptors in the peptide backbone. Some parts of the protein are ordered but do not form any regular structures. They should not be confused withrandom coil, an unfolded polypeptide chain lacking any fixed three-dimensional structure. Several sequential secondary structures may form a "supersecondary unit".[6]

Tertiary structure

[edit]
Main article:Protein tertiary structure

Tertiary structure refers to the three-dimensional structure created by a single protein molecule (a singlepolypeptide chain). It may includeone or several domains. The α-helices and β-pleated-sheets are folded into a compactglobular structure. The folding is driven by thenon-specifichydrophobic interactions, the burial ofhydrophobic residues fromwater, but the structure is stable only when the parts of aprotein domain are locked into place byspecific tertiary interactions, such assalt bridges, hydrogen bonds, and the tight packing of side chains anddisulfide bonds. The disulfide bonds are extremely rare in cytosolic proteins, since thecytosol (intracellular fluid) is generally areducing environment.

Quaternary structure

[edit]
Main article:Protein quaternary structure

Quaternary structure is the three-dimensional structure consisting of the aggregation of two or more individual polypeptide chains (subunits) that operate as a single functional unit (multimer). The resulting multimer is stabilized by the samenon-covalent interactions and disulfide bonds as in tertiary structure. There are many possible quaternary structure organisations.[7] Complexes of two or more polypeptides (i.e. multiple subunits) are calledmultimers. Specifically it would be called adimer if it contains two subunits, atrimer if it contains three subunits, atetramer if it contains four subunits, and apentamer if it contains five subunits, and so forth. The subunits are frequently related to one another bysymmetry operations, such as a 2-fold axis in a dimer. Multimers made up of identical subunits are referred to with a prefix of "homo-" and those made up of different subunits are referred to with a prefix of "hetero-", for example, a heterotetramer, such as the two alpha and two beta chains ofhemoglobin.

Homomers

[edit]

An assemblage of multiple copies of a particularpolypeptide chain can be described as ahomomer,multimer oroligomer. Bertolini et al. in 2021[8] presented evidence that homomer formation may be driven by interaction between nascent polypeptide chains as they are translated frommRNA by nearby adjacentribosomes. Hundreds of proteins have been identified as being assembled into homomers in human cells.[8] The process of assembly is often initiated by the interaction of the N-terminal region of polypeptide chains. Evidence that numerous gene products form homomers (multimers) in a variety of organisms based onintragenic complementation evidence was reviewed in 1965.[9]

Domains, motifs, and folds in protein structure

[edit]
Protein domains. The two shown protein structures share a common domain (maroon), thePH domain, which is involved inphosphatidylinositol (3,4,5)-trisphosphate binding

Proteins are frequently described as consisting of several structural units. These units include domains,motifs, and folds. Despite the fact that there are about 100,000 different proteins expressed ineukaryotic systems, there are many fewer different domains, structural motifs and folds.

Structural domain

[edit]

Astructural domain is an element of the protein's overall structure that is self-stabilizing and oftenfolds independently of the rest of the protein chain. Many domains are not unique to the protein products of onegene or onegene family but instead appear in a variety of proteins. Domains often are named and singled out because they figure prominently in the biological function of the protein they belong to; for example, the "calcium-binding domain ofcalmodulin". Because they are independently stable, domains can be "swapped" bygenetic engineering between one protein and another to makechimera proteins. A conservative combination of several domains that occur in different proteins, such asprotein tyrosine phosphatase domain andC2 domain pair, was called "a superdomain" that may evolve as a single unit.[10]

Structural and sequence motifs

[edit]

Thestructural andsequence motifs refer to short segments of protein three-dimensional structure or amino acid sequence that were found in a large number of different proteins

Supersecondary structure

[edit]

Tertiary protein structures can have multiple secondary elements on the same polypeptide chain. Thesupersecondary structure refers to a specific combination ofsecondary structure elements, such as β-α-β units or ahelix-turn-helix motif. Some of them may be also referred to as structural motifs.

Protein fold

[edit]

A protein fold refers to the general protein architecture, like ahelix bundle,β-barrel,Rossmann fold or different "folds" provided in theStructural Classification of Proteins database.[11] A related concept isprotein topology.

Protein dynamics and conformational ensembles

[edit]
Main article:Protein dynamics

Proteins are not static objects, but rather populate ensembles ofconformational states. Transitions between these states typically occur onnanoscales, and have been linked to functionally relevant phenomena such asallosteric signaling[12] andenzyme catalysis.[13]Protein dynamics andconformational changes allow proteins to function as nanoscalebiological machines within cells, often in the form ofmulti-protein complexes.[14] Examples includemotor proteins, such asmyosin, which is responsible formuscle contraction,kinesin, which moves cargo inside cells away from thenucleus alongmicrotubules, anddynein, which moves cargo inside cells towards the nucleus and produces the axonemal beating ofmotile cilia andflagella. "[I]n effect, the [motile cilium] is a nanomachine composed of perhaps over 600 proteins in molecular complexes, many of which also function independently as nanomachines...Flexible linkers allow themobile protein domains connected by them to recruit their binding partners and induce long-rangeallostery viaprotein domain dynamics. "[15]

Schematic view of the two main ensemble modeling approaches.[16]

Proteins are often thought of as relatively stabletertiary structures that experience conformational changes after being affected by interactions with other proteins or as a part of enzymatic activity. However, proteins may have varying degrees of stability, and some of the less stable variants areintrinsically disordered proteins. These proteins exist and function in a relatively 'disordered' state lacking a stabletertiary structure. As a result, they are difficult to describe by a single fixedtertiary structure.Conformational ensembles have been devised as a way to provide a more accurate and 'dynamic' representation of the conformational state ofintrinsically disordered proteins.[17][16]

Proteinensemble files are a representation of a protein that can be considered to have a flexible structure. Creating these files requires determining which of the various theoretically possible protein conformations actually exist. One approach is to apply computational algorithms to the protein data in order to try to determine the most likely set of conformations for anensemble file. There are multiple methods for preparing data for theProtein Ensemble Database that fall into two general methodologies – pool and molecular dynamics (MD) approaches (diagrammed in the figure). The pool based approach uses the protein's amino acid sequence to create a massive pool of random conformations. This pool is then subjected to more computational processing that creates a set of theoretical parameters for each conformation based on the structure. Conformational subsets from this pool whose average theoretical parameters closely match known experimental data for this protein are selected. The alternative molecular dynamics approach takes multiple random conformations at a time and subjects all of them to experimental data. Here the experimental data is serving as limitations to be placed on the conformations (e.g. known distances between atoms). Only conformations that manage to remain within the limits set by the experimental data are accepted. This approach often applies large amounts of experimental data to the conformations which is a very computationally demanding task.[16]

The conformational ensembles were generated for a number of highly dynamic and partially unfolded proteins, such asSic1/Cdc4,[18]p15 PAF,[19]MKK7,[20]Beta-synuclein[21] andP27[22]

Protein folding

[edit]
[icon]
This sectionneeds expansion. You can help byadding to it.(April 2019)
Main article:Protein folding

As it is translated, polypeptides exit theribosome mostly as arandom coil and folds into itsnative state.[23][24] The final structure of the protein chain is generally assumed to be determined by its amino acid sequence (Anfinsen's dogma).[25]

Protein stability

[edit]
Main article:Equilibrium unfolding

Thermodynamic stability of proteins represents thefree energy difference between the folded andunfolded protein states. This free energy difference is very sensitive to temperature, hence a change in temperature may result in unfolding or denaturation.Protein denaturation may result in loss of function, and loss of native state. The free energy of stabilization of soluble globular proteins typically does not exceed 50 kJ/mol.[citation needed] Taking into consideration the large number of hydrogen bonds that take place for the stabilization of secondary structures, and the stabilization of the inner core through hydrophobic interactions, the free energy of stabilization emerges as small difference between large numbers.[26]

Protein structure determination

[edit]
Examples of protein structures from thePDB
Rate of Protein Structure Determination by Method and Year

Around 90% of the protein structures available in theProtein Data Bank have been determined byX-ray crystallography.[27] This method allows one to measure the three-dimensional (3-D) density distribution ofelectrons in the protein, in thecrystallized state, and therebyinfer the 3-D coordinates of all theatoms to be determined to a certain resolution. Roughly 7% of the known protein structures have been obtained bynuclear magnetic resonance (NMR) techniques.[28] For larger protein complexes,cryo-electron microscopy can determine protein structures. The resolution is typically lower than that of X-ray crystallography, or NMR, but the maximum resolution is steadily increasing. This technique is still a particularly valuable for very large protein complexes such asvirus coat proteins andamyloid fibers.

General secondary structure composition can be determined viacircular dichroism.Vibrational spectroscopy can also be used to characterize the conformation of peptides, polypeptides, and proteins.[29]Two-dimensional infrared spectroscopy has become a valuable method to investigate the structures of flexible peptides and proteins that cannot be studied with other methods.[30][31] A more qualitative picture of protein structure is often obtained byproteolysis, which is also useful to screen for more crystallizable protein samples. Novel implementations of this approach, includingfast parallel proteolysis (FASTpp), can probe the structured fraction and its stability without the need for purification.[32] Once a protein's structure has been experimentally determined, further detailed studies can be done computationally, usingmolecular dynamic simulations of that structure.[33]

Protein structure databases

[edit]

Aprotein structure database is a database that ismodeled around the variousexperimentally determined protein structures. The aim of most protein structure databases is to organize and annotate the protein structures, providing the biological community access to the experimental data in a useful way. Data included in protein structure databases often includes 3D coordinates as well as experimental information, such as unit cell dimensions and angles forx-ray crystallography determined structures. Though most instances, in this case either proteins or a specific structure determinations of a protein, also contain sequence information and some databases even provide means for performing sequence based queries, the primary attribute of a structure database is structural information, whereassequence databases focus on sequence information, and contain no structural information for the majority of entries. Protein structure databases are critical for many efforts incomputational biology such asstructure based drug design, both in developing the computational methods used and in providing a large experimental dataset used by some methods to provide insights about the function of a protein.[34]

Structural classifications of proteins

[edit]

Protein structures can be grouped based on their structural similarity,topological class or a commonevolutionary origin. TheStructural Classification of Proteins database[35] andCATH database[36] provide two different structural classifications of proteins. When the structural similarity is large the two proteins have possibly diverged from a common ancestor,[37] and shared structure between proteins is considered evidence ofhomology. Structure similarity can then be used to group proteins together intoprotein superfamilies.[38] If shared structure is significant but the fraction shared is small, the fragment shared may be the consequence of a more dramatic evolutionary event such ashorizontal gene transfer, and joining proteins sharing these fragments into protein superfamilies is no longer justified.[37] Topology of a protein can be used to classify proteins as well.Knot theory andcircuit topology are two topology frameworks developed for classification of protein folds based on chain crossing and intrachain contacts respectively.

Computational prediction of protein structure

[edit]
Main article:Protein structure prediction

The generation of aprotein sequence is much easier than the determination of a protein structure. However, the structure of a protein gives much more insight in the function of the protein than its sequence. Therefore, a number of methods for the computational prediction of protein structure from its sequence have been developed.[39]Ab initio prediction methods use just the sequence of the protein.Threading andhomology modeling methods can build a 3-D model for a protein of unknown structure from experimental structures of evolutionarily-related proteins, called aprotein family.

See also

[edit]

References

[edit]
  1. ^Stoker HS (1 January 2015).Organic and Biological Chemistry. Cengage Learning. p. 371.ISBN 978-1-305-68645-8.
  2. ^Brocchieri L, Karlin S (10 June 2005)."Protein length in eukaryotic and prokaryotic proteomes".Nucleic Acids Research.33 (10):3390–3400.doi:10.1093/nar/gki615.PMC 1150220.PMID 15951512.
  3. ^Sanger F, Tuppy H (September 1951)."The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates".The Biochemical Journal.49 (4):463–481.doi:10.1042/bj0490463.PMC 1197535.PMID 14886310.
  4. ^Sanger F (May 1959). "Chemistry of insulin; determination of the structure of insulin opens the way to greater understanding of life processes".Science.129 (3359):1340–1344.Bibcode:1959Sci...129.1340G.doi:10.1126/science.129.3359.1340.PMID 13658959.
  5. ^Pauling L, Corey RB, Branson HR (April 1951)."The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain".Proceedings of the National Academy of Sciences of the United States of America.37 (4):205–211.Bibcode:1951PNAS...37..205P.doi:10.1073/pnas.37.4.205.PMC 1063337.PMID 14816373.
  6. ^Chiang YS, Gelfand TI, Kister AE, Gelfand IM (September 2007). "New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage".Proteins.68 (4):915–921.doi:10.1002/prot.21473.PMID 17557333.S2CID 29904865.
  7. ^Moutevelis E, Woolfson DN (January 2009). "A periodic table of coiled-coil protein structures".Journal of Molecular Biology.385 (3):726–732.doi:10.1016/j.jmb.2008.11.028.PMID 19059267.
  8. ^abBertolini M, Fenzl K, Kats I, Wruck F, Tippmann F, Schmitt J, Auburger JJ, Tans S, Bukau B, Kramer G (January 2021)."Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly".Science.371 (6524):57–64.Bibcode:2021Sci...371...57B.doi:10.1126/science.abc7151.PMC 7613021.PMID 33384371.
  9. ^BERNSTEIN H, EDGAR RS, DENHARDT GH (June 1965)."Intragenic Complementation Among Temperature Sensitive Mutants of Bacteriophage T4D".Genetics.51 (6):987–1002.doi:10.1093/genetics/51.6.987.PMC 1210828.PMID 14337770.
  10. ^Haynie DT, Xue B (May 2015)."Superdomains in the protein structure hierarchy: The case of PTP-C2".Protein Science.24 (5):874–882.doi:10.1002/pro.2664.PMC 4420535.PMID 25694109.
  11. ^Govindarajan S, Recabarren R, Goldstein RA (June 1999)."Estimating the total number of protein folds".Proteins.35 (4):408–414.doi:10.1002/(SICI)1097-0134(19990601)35:4<408::AID-PROT4>3.0.CO;2-A.hdl:2027.42/34969.PMID 10382668.S2CID 7147867. Archived fromthe original on 5 January 2013.
  12. ^Bu Z, Callaway DJ (2011)."Proteins MOVE! Protein dynamics and long-range allostery in cell signaling".Protein Structure and Diseases. Advances in Protein Chemistry and Structural Biology. Vol. 83. Academic Press. pp. 163–221.doi:10.1016/B978-0-12-381262-9.00005-7.ISBN 9780123812629.PMID 21570668.
  13. ^Fraser JS, Clarkson MW, Degnan SC, Erion R, Kern D, Alber T (December 2009)."Hidden alternative structures of proline isomerase essential for catalysis".Nature.462 (7273):669–673.Bibcode:2009Natur.462..669F.doi:10.1038/nature08615.PMC 2805857.PMID 19956261.
  14. ^Voet D, Voet JG (2011).Biochemistry (4th ed.). Hoboken, NJ: John Wiley & Sons.ISBN 9780470570951.OCLC 690489261.
  15. ^Satir P, Christensen ST (June 2008)."Structure and function of mammalian cilia".Histochemistry and Cell Biology.129 (6):687–693.doi:10.1007/s00418-008-0416-9.PMC 2386530.PMID 18365235. 1432-119X.
  16. ^abcVaradi M, Vranken W, Guharoy M, Tompa P (1 January 2015)."Computational approaches for inferring the functions of intrinsically disordered proteins".Frontiers in Molecular Biosciences.2: 45.doi:10.3389/fmolb.2015.00045.PMC 4525029.PMID 26301226.
  17. ^Protein Ensemble Database
  18. ^Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H, Sicheri F, et al. (March 2010)."Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase".Structure.18 (4):494–506.doi:10.1016/j.str.2010.01.020.PMC 2924144.PMID 20399186.
  19. ^De Biasio A, Ibáñez de Opakua A, Cordeiro TN, Villate M, Merino N, Sibille N, et al. (February 2014)."p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins".Biophysical Journal.106 (4):865–874.Bibcode:2014BpJ...106..865D.doi:10.1016/j.bpj.2013.12.046.PMC 3944474.PMID 24559989.
  20. ^Kragelj J, Palencia A, Nanao MH, Maurin D, Bouvignies G, Blackledge M, Jensen MR (March 2015)."Structure and dynamics of the MKK7-JNK signaling complex".Proceedings of the National Academy of Sciences of the United States of America.112 (11):3409–3414.Bibcode:2015PNAS..112.3409K.doi:10.1073/pnas.1419528112.PMC 4371970.PMID 25737554.
  21. ^Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM (November 2014)."A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein".Biochemistry.53 (46):7170–7183.doi:10.1021/bi5009326.PMC 4245978.PMID 25389903.
  22. ^Sivakolundu SG, Bashford D, Kriwacki RW (November 2005). "Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation".Journal of Molecular Biology.353 (5):1118–1128.doi:10.1016/j.jmb.2005.08.074.PMID 16214166.
  23. ^Zhang G, Ignatova Z (February 2011). "Folding at the birth of the nascent chain: coordinating translation with co-translational folding".Current Opinion in Structural Biology.21 (1):25–31.doi:10.1016/j.sbi.2010.10.008.PMID 21111607.
  24. ^Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P (2002)."The Shape and Structure of Proteins".Molecular Biology of the Cell (Fourth ed.). New York and London: Garland Science.ISBN 978-0-8153-3218-3.
  25. ^Anfinsen CB (July 1972)."The formation and stabilization of protein structure".The Biochemical Journal.128 (4):737–749.doi:10.1042/bj1280737.PMC 1173893.PMID 4565129.
  26. ^Jaenicke R (January 1990)."Protein structure and function at low temperatures".Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.326 (1237):535–553.Bibcode:1990RSPTB.326..535J.doi:10.1098/rstb.1990.0030.JSTOR 2398703.PMID 1969647.
  27. ^Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (March 1958). "A three-dimensional model of the myoglobin molecule obtained by x-ray analysis".Nature.181 (4610):662–666.Bibcode:1958Natur.181..662K.doi:10.1038/181662a0.PMID 13517261.S2CID 4162786.
  28. ^"PDB Statistics". 1 October 2022.
  29. ^Krimm S, Bandekar J (1986). "Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins".Advances in Protein Chemistry Volume 38. Vol. 38. pp. 181–364.doi:10.1016/S0065-3233(08)60528-8.ISBN 9780120342389.PMID 3541539.{{cite book}}:|journal= ignored (help)
  30. ^Lessing J, Roy S, Reppert M, Baer M, Marx D, Jansen TL, et al. (March 2012)."Identifying residual structure in intrinsically disordered systems: a 2D IR spectroscopic study of the GVGXPGVG peptide"(PDF).Journal of the American Chemical Society.134 (11):5032–5035.doi:10.1021/ja2114135.hdl:11370/ff19c09b-088a-48f0-afee-2111a9b19252.PMID 22356513.
  31. ^Jansen TL, Knoester J (March 2008)."Two-dimensional infrared population transfer spectroscopy for enhancing structural markers of proteins".Biophysical Journal.94 (5):1818–1825.Bibcode:2008BpJ....94.1818J.doi:10.1529/biophysj.107.118851.PMC 2242754.PMID 17981904.
  32. ^Minde DP, Maurice MM, Rüdiger SG (2012)."Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp".PLOS ONE.7 (10): e46147.Bibcode:2012PLoSO...746147M.doi:10.1371/journal.pone.0046147.PMC 3463568.PMID 23056252.
  33. ^Kumari I, Sandhu P, Ahmed M, Akhter Y (August 2017). "Molecular Dynamics Simulations, Challenges and Opportunities: A Biologist's Prospective".Current Protein & Peptide Science.18 (11):1163–1179.doi:10.2174/1389203718666170622074741.PMID 28637405.
  34. ^Laskowski RA (June 2011). "Protein structure databases".Molecular Biotechnology.48 (2):183–198.doi:10.1007/s12033-010-9372-4.PMID 21225378.S2CID 45184564.
  35. ^Murzin AG,Brenner SE,Hubbard T,Chothia C (April 1995)."SCOP: a structural classification of proteins database for the investigation of sequences and structures"(PDF).Journal of Molecular Biology.247 (4):536–540.doi:10.1016/S0022-2836(05)80134-2.PMID 7723011. Archived fromthe original(PDF) on 26 April 2012.
  36. ^Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB,Thornton JM (August 1997)."CATH--a hierarchic classification of protein domain structures".Structure.5 (8):1093–1108.doi:10.1016/S0969-2126(97)00260-8.PMID 9309224.
  37. ^abPascual-García A, Abia D, Ortiz AR, Bastolla U (March 2009)."Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures".PLOS Computational Biology.5 (3): e1000331.Bibcode:2009PLSCB...5E0331P.doi:10.1371/journal.pcbi.1000331.PMC 2654728.PMID 19325884.
  38. ^Holm L, Rosenström P (July 2010)."Dali server: conservation mapping in 3D".Nucleic Acids Research.38 (Web Server issue):W545 –W549.doi:10.1093/nar/gkq366.PMC 2896194.PMID 20457744.
  39. ^Zhang Y (June 2008)."Progress and challenges in protein structure prediction".Current Opinion in Structural Biology.18 (3):342–348.doi:10.1016/j.sbi.2008.02.004.PMC 2680823.PMID 18436442.

Further reading

[edit]

External links

[edit]
Processes
Structures
Types
High resolution
Medium resolution
Spectroscopic
Translational diffusion
Rotational diffusion
Chemical
Thermodynamic
Computational
Protein
Nucleic acid
See also
  • Protein Structure drugdesign.org
  • [1] Method_for_the_Characterization_of_the_Three-Dimensional_Structure_of_Proteins_Employing_Mass_Spectrometric_Analysis_and_Experimental-Computational_Feedback_Modeling
  • [2] A_Method_for_the_Determination_of_the_Conformation_(Topology)_of_Proteins_Employing_Experimental-Computational_Feedback_Modeling
Retrieved from "https://en.wikipedia.org/w/index.php?title=Protein_structure&oldid=1270011954#Primary_structure"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp