Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Paracompact uniform honeycombs

From Wikipedia, the free encyclopedia
(Redirected fromAlternated order-6 cubic honeycomb)
Tessellation of convex uniform polyhedron cells
Example paracompact regular honeycombs

{3,3,6}

{6,3,3}

{4,3,6}

{6,3,4}

{5,3,6}

{6,3,5}

{6,3,6}

{3,6,3}

{4,4,3}

{3,4,4}

{4,4,4}

Ingeometry,uniform honeycombs in hyperbolic space aretessellations of convexuniform polyhedroncells. In 3-dimensionalhyperbolic space there are 23Coxeter group families ofparacompact uniform honeycombs, generated asWythoff constructions, and represented by ringpermutations of theCoxeter diagrams for each family. These families can produce uniform honeycombs with infinite or unboundedfacets orvertex figure, includingideal vertices at infinity, similar to thehyperbolic uniform tilings in two dimensions.

Regular paracompact honeycombs

[edit]

Of the uniform paracompact H3 honeycombs, 11 areregular, meaning that their group of symmetries acts transitively on their flags. These haveSchläfli symbol {3,3,6}, {6,3,3}, {3,4,4}, {4,4,3}, {3,6,3}, {4,3,6}, {6,3,4}, {4,4,4}, {5,3,6}, {6,3,5}, and {6,3,6}, and are shown below. Four have finiteIdeal polyhedral cells: {3,3,6}, {4,3,6}, {3,4,4}, and {5,3,6}.

11 paracompact regular honeycombs

{6,3,3}

{6,3,4}

{6,3,5}

{6,3,6}

{4,4,3}

{4,4,4}

{3,3,6}

{4,3,6}

{5,3,6}

{3,6,3}

{3,4,4}
NameSchläfli
Symbol
{p,q,r}
Coxeter
Cell
type
{p,q}
Face
type
{p}
Edge
figure
{r}
Vertex
figure

{q,r}
DualCoxeter
group
Order-6 tetrahedral honeycomb{3,3,6}{3,3}{3}{6}{3,6}{6,3,3}[6,3,3]
Hexagonal tiling honeycomb{6,3,3}{6,3}{6}{3}{3,3}{3,3,6}
Order-4 octahedral honeycomb{3,4,4}{3,4}{3}{4}{4,4}{4,4,3}[4,4,3]
Square tiling honeycomb{4,4,3}{4,4}{4}{3}{4,3}{3,4,4}
Triangular tiling honeycomb{3,6,3}{3,6}{3}{3}{6,3}Self-dual[3,6,3]
Order-6 cubic honeycomb{4,3,6}{4,3}{4}{4}{3,6}{6,3,4}[6,3,4]
Order-4 hexagonal tiling honeycomb{6,3,4}{6,3}{6}{4}{3,4}{4,3,6}
Order-4 square tiling honeycomb{4,4,4}{4,4}{4}{4}{4,4}Self-dual[4,4,4]
Order-6 dodecahedral honeycomb{5,3,6}{5,3}{5}{5}{3,6}{6,3,5}[6,3,5]
Order-5 hexagonal tiling honeycomb{6,3,5}{6,3}{6}{5}{3,5}{5,3,6}
Order-6 hexagonal tiling honeycomb{6,3,6}{6,3}{6}{6}{3,6}Self-dual[6,3,6]

Coxeter groups of paracompact uniform honeycombs

[edit]
These graphs show subgroup relations of paracompact hyperbolic Coxeter groups. Order 2 subgroups represent bisecting aGoursat tetrahedron with a plane of mirror symmetry.

This is a complete enumeration of the 151 uniqueWythoffian paracompact uniform honeycombs generated from tetrahedral fundamental domains (rank 4 paracompact coxeter groups). The honeycombs are indexed here for cross-referencing duplicate forms, with brackets around the nonprimary constructions.

Thealternations are listed, but are either repeats or don't generate uniform solutions. Single-hole alternations represent a mirror removal operation. If an end-node is removed, another simplex (tetrahedral) family is generated. If a hole has two branches, aVinberg polytope is generated, although only Vinberg polytope with mirror symmetry are related to the simplex groups, and their uniform honeycombs have not been systematically explored. These nonsimplectic (pyramidal) Coxeter groups are not enumerated on this page, except as special cases of half groups of the tetrahedral ones. Seven uniform honeycombs that arise here as alternations have been numbered 152 to 158, after the 151 Wythoffian forms not requiring alternation for their construction.

Tetrahedral hyperbolic paracompact group summary
Coxeter groupSimplex
volume
Commutator subgroupUnique honeycomb count
[6,3,3]0.0422892336[1+,6,(3,3)+] = [3,3[3]]+15
[4,4,3]0.0763304662[1+,4,1+,4,3+]15
[3,3[3]]0.0845784672[3,3[3]]+4
[6,3,4]0.1057230840[1+,6,3+,4,1+] = [3[]x[]]+15
[3,41,1]0.1526609324[3+,41+,1+]4
[3,6,3]0.1691569344[3+,6,3+]8
[6,3,5]0.1715016613[1+,6,(3,5)+] = [5,3[3]]+15
[6,31,1]0.2114461680[1+,6,(31,1)+] = [3[]x[]]+4
[4,3[3]]0.2114461680[1+,4,3[3]]+ = [3[]x[]]+4
[4,4,4]0.2289913985[4+,4+,4+]+6
[6,3,6]0.2537354016[1+,6,3+,6,1+] = [3[3,3]]+8
[(4,4,3,3)]0.3053218647[(4,1+,4,(3,3)+)]4
[5,3[3]]0.3430033226[5,3[3]]+4
[(6,3,3,3)]0.3641071004[(6,3,3,3)]+9
[3[]x[]]0.4228923360[3[]x[]]+1
[41,1,1]0.4579827971[1+,41+,1+,1+]0
[6,3[3]]0.5074708032[1+,6,3[3]] = [3[3,3]]+2
[(6,3,4,3)]0.5258402692[(6,3+,4,3+)]9
[(4,4,4,3)]0.5562821156[(4,1+,4,1+,4,3+)]9
[(6,3,5,3)]0.6729858045[(6,3,5,3)]+9
[(6,3,6,3)]0.8457846720[(6,3+,6,3+)]5
[(4,4,4,4)]0.9159655942[(4+,4+,4+,4+)]1
[3[3,3]]1.014916064[3[3,3]]+0

The complete list of nonsimplectic (non-tetrahedral) paracompact Coxeter groups was published by P. Tumarkin in 2003.[1] The smallest paracompact form in H3 can be represented by or, or [∞,3,3,∞] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1+,4] : =. The doubled fundamental domain changes from atetrahedron into a quadrilateral pyramid. Another pyramid is or, constructed as [4,4,1+,4] = [∞,4,4,∞] : =.

Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,∞,3)),((3,∞,3))] or, [(3,4,4,1+,4)] = [((4,∞,3)),((3,∞,4))] or, [(4,4,4,1+,4)] = [((4,∞,4)),((4,∞,4))] or. =, =, =.

Another nonsimplectic half groups is.

A radical nonsimplectic subgroup is, which can be doubled into a triangular prism domain as.

Pyramidal hyperbolic paracompact group summary
DimensionRankGraphs
H35

| | | |
| | | | |
| | | | | |
| | | | | | | | | | | |

Linear graphs

[edit]

[6,3,3] family

[edit]
#Honeycomb name
Coxeter diagram:
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figurePicture
1
2
3
4
1hexagonal (hexah)

{6,3,3}
---(4)

(6.6.6)

Tetrahedron
2rectified hexagonal (rihexah)

t1{6,3,3} or r{6,3,3}
(2)

(3.3.3)
--(3)

(3.6.3.6)

Triangular prism
3rectified order-6 tetrahedral (rath)

t1{3,3,6} or r{3,3,6}
(6)

(3.3.3.3)
--(2)

(3.3.3.3.3.3)

Hexagonal prism
4order-6 tetrahedral (thon)

{3,3,6}
(∞)

(3.3.3)
---
Triangular tiling
5truncated hexagonal (thexah)

t0,1{6,3,3} or t{6,3,3}
(1)

(3.3.3)
--(3)

(3.12.12)

Triangular pyramid
6cantellated hexagonal (srihexah)

t0,2{6,3,3} or rr{6,3,3}
(1)

3.3.3.3
(2)

(4.4.3)
-(2)

(3.4.6.4)
7runcinated hexagonal (sidpithexah)

t0,3{6,3,3}
(1)

(3.3.3)
(3)

(4.4.3)
(3)

(4.4.6)
(1)

(6.6.6)
8cantellated order-6 tetrahedral (srath)

t0,2{3,3,6} or rr{3,3,6}
(1)

(3.4.3.4)
-(2)

(4.4.6)
(2)

(3.6.3.6)
9bitruncated hexagonal (tehexah)

t1,2{6,3,3} or 2t{6,3,3}
(2)

(3.6.6)
--(2)

(6.6.6)
10truncated order-6 tetrahedral (tath)

t0,1{3,3,6} or t{3,3,6}
(6)

(3.6.6)
--(1)

(3.3.3.3.3.3)
11cantitruncated hexagonal (grihexah)

t0,1,2{6,3,3} or tr{6,3,3}
(1)

(3.6.6)
(1)

(4.4.3)
-(2)

(4.6.12)
12runcitruncated hexagonal (prath)

t0,1,3{6,3,3}
(1)

(3.4.3.4)
(2)

(4.4.3)
(1)

(4.4.12)
(1)

(3.12.12)
13runcitruncated order-6 tetrahedral (prihexah)

t0,1,3{3,3,6}
(1)

(3.6.6)
(1)

(4.4.6)
(2)

(4.4.6)
(1)

(3.4.6.4)
14cantitruncated order-6 tetrahedral (grath)

t0,1,2{3,3,6} or tr{3,3,6}
(2)

(4.6.6)
-(1)

(4.4.6)
(1)

(6.6.6)
15omnitruncated hexagonal (gidpithexah)

t0,1,2,3{6,3,3}
(1)

(4.6.6)
(1)

(4.4.6)
(1)

(4.4.12)
(1)

(4.6.12)
Alternated forms
#Honeycomb name
Coxeter diagram:
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figurePicture
1
2
3
4
Alt
[137]alternated hexagonal (ahexah)
() =
--(4)

(3.3.3.3.3.3)
(4)

(3.3.3)

(3.6.6)
[138]cantic hexagonal (tahexah)
(1)

(3.3.3.3)
-(2)

(3.6.3.6)
(2)

(3.6.6)
[139]runcic hexagonal (birahexah)
(1)

(4.4.4)
(1)

(4.4.3)
(1)

(3.3.3.3.3.3)
(3)

(3.4.3.4)
[140]runcicantic hexagonal (bitahexah)
(1)

(3.6.6)
(1)

(4.4.3)
(1)

(3.6.3.6)
(2)

(4.6.6)
Nonuniformsnub rectified order-6 tetrahedral

sr{3,3,6}

Irr.(3.3.3)
Nonuniformcantic snub order-6 tetrahedral

sr3{3,3,6}
Nonuniformomnisnub order-6 tetrahedral

ht0,1,2,3{6,3,3}

Irr.(3.3.3)

[6,3,4] family

[edit]

There are 15 forms, generated by ringpermutations of theCoxeter group: [6,3,4] or

#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertexVertex figurePicture
0
1
2
3
16(Regular)order-4 hexagonal (shexah)

{6,3,4}
---(8)


(6.6.6)

(3.3.3.3)
17rectified order-4 hexagonal (rishexah)

t1{6,3,4} or r{6,3,4}
(2)


(3.3.3.3)
--(4)


(3.6.3.6)

(4.4.4)
18rectified order-6 cubic (rihach)

t1{4,3,6} or r{4,3,6}
(6)


(3.4.3.4)
--(2)


(3.3.3.3.3.3)

(6.4.4)
19order-6 cubic (hachon)

{4,3,6}
(20)


(4.4.4)
---
(3.3.3.3.3.3)
20truncated order-4 hexagonal (tishexah)

t0,1{6,3,4} or t{6,3,4}
(1)


(3.3.3.3)
--(4)


(3.12.12)
21bitruncated order-6 cubic (chexah)

t1,2{6,3,4} or 2t{6,3,4}
(2)


(4.6.6)
--(2)


(6.6.6)
22truncated order-6 cubic (thach)

t0,1{4,3,6} or t{4,3,6}
(6)


(3.8.8)
--(1)


(3.3.3.3.3.3)
23cantellated order-4 hexagonal (srishexah)

t0,2{6,3,4} or rr{6,3,4}
(1)


(3.4.3.4)
(2)


(4.4.4)
-(2)


(3.4.6.4)
24cantellated order-6 cubic (srihach)

t0,2{4,3,6} or rr{4,3,6}
(2)


(3.4.4.4)
-(2)


(4.4.6)
(1)


(3.6.3.6)
25runcinated order-6 cubic (sidpichexah)

t0,3{6,3,4}
(1)


(4.4.4)
(3)


(4.4.4)
(3)


(4.4.6)
(1)


(6.6.6)
26cantitruncated order-4 hexagonal (grishexah)

t0,1,2{6,3,4} or tr{6,3,4}
(1)


(4.6.6)
(1)


(4.4.4)
-(2)


(4.6.12)
27cantitruncated order-6 cubic (grihach)

t0,1,2{4,3,6} or tr{4,3,6}
(2)


(4.6.8)
-(1)


(4.4.6)
(1)


(6.6.6)
28runcitruncated order-4 hexagonal (prihach)

t0,1,3{6,3,4}
(1)


(3.4.4.4)
(1)


(4.4.4)
(2)


(4.4.12)
(1)


(3.12.12)
29runcitruncated order-6 cubic (prishexah)

t0,1,3{4,3,6}
(1)


(3.8.8)
(2)


(4.4.8)
(1)


(4.4.6)
(1)


(3.4.6.4)
30omnitruncated order-6 cubic (gidpichexah)

t0,1,2,3{6,3,4}
(1)


(4.6.8)
(1)


(4.4.8)
(1)


(4.4.12)
(1)


(4.6.12)
Alternated forms
#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertexVertex figurePicture
0
1
2
3
Alt
[87]alternated order-6 cubic (ahach)

h{4,3,6}

(3.3.3)
  
(3.3.3.3.3.3)


(3.6.3.6)
[88]cantic order-6 cubic (tachach)

h2{4,3,6}
(2)

(3.6.6)
--(1)

(3.6.3.6)
(2)

(6.6.6)
[89]runcic order-6 cubic (birachach)

h3{4,3,6}
(1)

(3.3.3)
--(1)

(6.6.6)
(3)

(3.4.6.4)
[90]runcicantic order-6 cubic (bitachach)

h2,3{4,3,6}
(1)

(3.6.6)
--(1)

(3.12.12)
(2)

(4.6.12)
[141]alternated order-4 hexagonal (ashexah)

h{6,3,4}
--
(3.3.3.3.3.3)

(3.3.3.3)

(4.6.6)
[142]cantic order-4 hexagonal (tashexah)

h1{6,3,4}
(1)

(3.4.3.4)
-(2)

(3.6.3.6)
(2)

(4.6.6)
[143]runcic order-4 hexagonal (birashexah)

h3{6,3,4}
(1)

(4.4.4)
(1)

(4.4.3)
(1)

(3.3.3.3.3.3)
(3)

(3.4.4.4)
[144]runcicantic order-4 hexagonal (bitashexah)

h2,3{6,3,4}
(1)

(3.8.8)
(1)

(4.4.3)
(1)

(3.6.3.6)
(2)

(4.6.8)
[151]quarter order-4 hexagonal (quishexah)

q{6,3,4}
(3)
(1)
-(1)
(3)
Nonuniformbisnub order-6 cubic

2s{4,3,6}


(3.3.3.3.3)
--

(3.3.3.3.3.3)

+(3.3.3)
Nonuniformruncic bisnub order-6 cubic
Nonuniformsnub rectified order-6 cubic

sr{4,3,6}


(3.3.3.3.3)


(3.3.3)


(3.3.3.3)


(3.3.3.3.6)

+(3.3.3)
Nonuniformruncic snub rectified order-6 cubic

sr3{4,3,6}
Nonuniformsnub rectified order-4 hexagonal

sr{6,3,4}


(3.3.3.3.3.3)


(3.3.3)
-

(3.3.3.3.6)

+(3.3.3)
Nonuniformruncisnub rectified order-4 hexagonal

sr3{6,3,4}
Nonuniformomnisnub rectified order-6 cubic

ht0,1,2,3{6,3,4}


(3.3.3.3.4)


(3.3.3.4)


(3.3.3.6)


(3.3.3.3.6)

+(3.3.3)

[6,3,5] family

[edit]
#Honeycomb name
Coxeter diagram
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
31order-5 hexagonal (phexah)

{6,3,5}
---(20)

(6)3

Icosahedron
32rectified order-5 hexagonal (riphexah)

t1{6,3,5} or r{6,3,5}
(2)

(3.3.3.3.3)
--(5)

(3.6)2

(5.4.4)
33rectified order-6 dodecahedral (rihed)

t1{5,3,6} or r{5,3,6}
(5)

(3.5.3.5)
--(2)

(3)6

(6.4.4)
34order-6 dodecahedral (hedhon)

{5,3,6}

(5.5.5)
---(∞)

(3)6
35truncated order-5 hexagonal (tiphexah)

t0,1{6,3,5} or t{6,3,5}
(1)

(3.3.3.3.3)
--(5)

3.12.12
36cantellated order-5 hexagonal (sriphexah)

t0,2{6,3,5} or rr{6,3,5}
(1)

(3.5.3.5)
(2)

(5.4.4)
-(2)

3.4.6.4
37runcinated order-6 dodecahedral (sidpidohexah)

t0,3{6,3,5}
(1)

(5.5.5)
-(6)

(6.4.4)
(1)

(6)3
38cantellated order-6 dodecahedral (srihed)

t0,2{5,3,6} or rr{5,3,6}
(2)

(4.3.4.5)
-(2)

(6.4.4)
(1)

(3.6)2
39bitruncated order-6 dodecahedral (dohexah)

t1,2{6,3,5} or 2t{6,3,5}
(2)

(5.6.6)
--(2)

(6)3
40truncated order-6 dodecahedral (thed)

t0,1{5,3,6} or t{5,3,6}
(6)

(3.10.10)
--(1)

(3)6
41cantitruncated order-5 hexagonal (griphexah)

t0,1,2{6,3,5} or tr{6,3,5}
(1)

(5.6.6)
(1)

(5.4.4)
-(2)

4.6.10
42runcitruncated order-5 hexagonal (prihed)

t0,1,3{6,3,5}
(1)

(4.3.4.5)
(1)

(5.4.4)
(2)

(12.4.4)
(1)

3.12.12
43runcitruncated order-6 dodecahedral (priphaxh)

t0,1,3{5,3,6}
(1)

(3.10.10)
(1)

(10.4.4)
(2)

(6.4.4)
(1)

3.4.6.4
44cantitruncated order-6 dodecahedral (grihed)

t0,1,2{5,3,6} or tr{5,3,6}
(1)

(4.6.10)
-(2)

(6.4.4)
(1)

(6)3
45omnitruncated order-6 dodecahedral (gidpidohaxh)

t0,1,2,3{6,3,5}
(1)

(4.6.10)
(1)

(10.4.4)
(1)

(12.4.4)
(1)

4.6.12
Alternated forms
#Honeycomb name
Coxeter diagram
Schläfli symbol
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
Alt
[145]alternated order-5 hexagonal (aphexah)

h{6,3,5}
---(20)

(3)6
(12)

(3)5

(5.6.6)
[146]cantic order-5 hexagonal (taphexah)

h2{6,3,5}
(1)

(3.5.3.5)
-(2)

(3.6.3.6)
(2)

(5.6.6)
[147]runcic order-5 hexagonal (biraphexah)

h3{6,3,5}
(1)

(5.5.5)
(1)

(4.4.3)
(1)

(3.3.3.3.3.3)
(3)

(3.4.5.4)
[148]runcicantic order-5 hexagonal (bitaphexah)

h2,3{6,3,5}
(1)

(3.10.10)
(1)

(4.4.3)
(1)

(3.6.3.6)
(2)

(4.6.10)
Nonuniformsnub rectified order-6 dodecahedral

sr{5,3,6}

(3.3.5.3.5)
-
(3.3.3.3)

(3.3.3.3.3.3)

irr. tet
Nonuniformomnisnub order-5 hexagonal

ht0,1,2,3{6,3,5}

(3.3.5.3.5)

(3.3.3.5)

(3.3.3.6)

(3.3.6.3.6)

irr. tet

[6,3,6] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group: [6,3,6] or

#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertexVertex figurePicture
0
1
2
3
46order-6 hexagonal (hihexah)

{6,3,6}
---(20)

(6.6.6)

(3.3.3.3.3.3)
47rectified order-6 hexagonal (rihihexah)

t1{6,3,6} or r{6,3,6}
(2)

(3.3.3.3.3.3)
--(6)

(3.6.3.6)

(6.4.4)
48truncated order-6 hexagonal (thihexah)

t0,1{6,3,6} or t{6,3,6}
(1)

(3.3.3.3.3.3)
--(6)

(3.12.12)
49cantellated order-6 hexagonal (srihihexah)

t0,2{6,3,6} or rr{6,3,6}
(1)

(3.6.3.6)
(2)

(4.4.6)
-(2)

(3.6.4.6)
50Runcinated order-6 hexagonal (spiddihexah)

t0,3{6,3,6}
(1)

(6.6.6)
(3)

(4.4.6)
(3)

(4.4.6)
(1)

(6.6.6)
51cantitruncated order-6 hexagonal (grihihexah)

t0,1,2{6,3,6} or tr{6,3,6}
(1)

(6.6.6)
(1)

(4.4.6)
-(2)

(4.6.12)
52runcitruncated order-6 hexagonal (prihihexah)

t0,1,3{6,3,6}
(1)

(3.6.4.6)
(1)

(4.4.6)
(2)

(4.4.12)
(1)

(3.12.12)
53omnitruncated order-6 hexagonal (gidpiddihexah)

t0,1,2,3{6,3,6}
(1)

(4.6.12)
(1)

(4.4.12)
(1)

(4.4.12)
(1)

(4.6.12)
[1]bitruncated order-6 hexagonal (hexah)

t1,2{6,3,6} or 2t{6,3,6}
(2)

(6.6.6)
--(2)

(6.6.6)
Alternated forms
#Name of honeycomb
Coxeter diagram
Schläfli symbol
Cells by location and count per vertexVertex figurePicture
0
1
2
3
Alt
[47]rectified order-6 hexagonal (rihihexah)

q{6,3,6} = r{6,3,6}
(2)

(3.3.3.3.3.3)
--(6)

(3.6.3.6)

(6.4.4)
[54]triangular (trah)
() =
h{6,3,6} = {3,6,3}
---

(3.3.3.3.3.3)


(3.3.3.3.3.3)

{6,3}
[55]cantic order-6 hexagonal (ritrah)
() =
h2{6,3,6} = r{3,6,3}
(1)

(3.6.3.6)
-(2)

(6.6.6)
(2)

(3.6.3.6)
[149]runcic order-6 hexagonal

h3{6,3,6}
(1)

(6.6.6)
(1)

(4.4.3)
(3)

(3.4.6.4)
(1)

(3.3.3.3.3.3)
[150]runcicantic order-6 hexagonal

h2,3{6,3,6}
(1)

(3.12.12)
(1)

(4.4.3)
(2)

(4.6.12)
(1)

(3.6.3.6)
[137]alternated hexagonal (ahexah)
() =
2s{6,3,6} = h{6,3,3}


(3.3.3.3.6)
--

(3.3.3.3.6)

+(3.3.3)

(3.6.6)
Nonuniformsnub rectified order-6 hexagonal

sr{6,3,6}


(3.3.3.3.3.3)


(3.3.3.3)
-

(3.3.3.3.6)

+(3.3.3)
Nonuniformalternated runcinated order-6 hexagonal

ht0,3{6,3,6}


(3.3.3.3.3.3)


(3.3.3.3)


(3.3.3.3)


(3.3.3.3.3.3)

+(3.3.3)
Nonuniformomnisnub order-6 hexagonal

ht0,1,2,3{6,3,6}


(3.3.3.3.6)


(3.3.3.6)


(3.3.3.6)


(3.3.3.3.6)

+(3.3.3)

[3,6,3] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group: [3,6,3] or

#Honeycomb name
Coxeter diagram
andSchläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figurePicture
0
1
2
3
54triangular (trah)

{3,6,3}
---(∞)

{3,6}

{6,3}
55rectified triangular (ritrah)

t1{3,6,3} or r{3,6,3}
(2)

(6)3
--(3)

(3.6)2

(3.4.4)
56cantellated triangular (sritrah)

t0,2{3,6,3} or rr{3,6,3}
(1)

(3.6)2
(2)

(4.4.3)
-(2)

(3.6.4.6)
57runcinated triangular (spidditrah)

t0,3{3,6,3}
(1)

(3)6
(6)

(4.4.3)
(6)

(4.4.3)
(1)

(3)6
58bitruncated triangular (ditrah)

t1,2{3,6,3} or 2t{3,6,3}
(2)

(3.12.12)
--(2)

(3.12.12)
59cantitruncated triangular (gritrah)

t0,1,2{3,6,3} or tr{3,6,3}
(1)

(3.12.12)
(1)

(4.4.3)
-(2)

(4.6.12)
60runcitruncated triangular (pritrah)

t0,1,3{3,6,3}
(1)

(3.6.4.6)
(1)

(4.4.3)
(2)

(4.4.6)
(1)

(6)3
61omnitruncated triangular (gipidditrah)

t0,1,2,3{3,6,3}
(1)

(4.6.12)
(1)

(4.4.6)
(1)

(4.4.6)
(1)

(4.6.12)
[1]truncated triangular (hexah)

t0,1{3,6,3} or t{3,6,3} = {6,3,3}
(1)

(6)3
--(3)

(6)3

{3,3}
Alternated forms
#Honeycomb name
Coxeter diagram
andSchläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figurePicture
0
1
2
3
Alt
[56]cantellated triangular (sritrah)
=
s2{3,6,3}
(1)

(3.6)2
--(2)

(3.6.4.6)

(3.4.4)
[60]runcitruncated triangular (pritrah)
=
s2,3{3,6,3}
(1)

(6)3
-(1)

(4.4.3)
(1)

(3.6.4.6)
(2)

(4.4.6)
[137]alternated hexagonal (ahexah)
( ) = ()
s{3,6,3}

(3)6
--
(3)6

+(3)3

(3.6.6)
Scaliformruncisnub triangular (pristrah)

s3{3,6,3}

r{6,3}
-
(3.4.4)

(3)6

tricup
Nonuniformomnisnub triangular tiling honeycomb (snatrah)

ht0,1,2,3{3,6,3}

(3.3.3.3.6)

(3)4

(3)4

(3.3.3.3.6)

+(3)3

[4,4,3] family

[edit]

There are 15 forms, generated by ringpermutations of theCoxeter group: [4,4,3] or

#Honeycomb name
Coxeter diagram
andSchläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figurePicture
0
1
2
3
62square (squah)
=
{4,4,3}
---(6)


Cube
63rectified square (risquah)
=
t1{4,4,3} or r{4,4,3}
(2)

--(3)



Triangular prism
64rectified order-4 octahedral (rocth)

t1{3,4,4} or r{3,4,4}
(4)

--(2)

65order-4 octahedral (octh)

{3,4,4}
(∞)

---
66truncated square (tisquah)
=
t0,1{4,4,3} or t{4,4,3}
(1)

--(3)

67truncated order-4 octahedral (tocth)

t0,1{3,4,4} or t{3,4,4}
(4)

--(1)

68bitruncated square (osquah)

t1,2{4,4,3} or 2t{4,4,3}
(2)

--(2)

69cantellated square (srisquah)

t0,2{4,4,3} or rr{4,4,3}
(1)

(2)

-(2)

70cantellated order-4 octahedral (srocth)

t0,2{3,4,4} or rr{3,4,4}
(2)

-(2)

(1)

71runcinated square (sidposquah)

t0,3{4,4,3}
(1)

(3)

(3)

(1)

72cantitruncated square (grisquah)

t0,1,2{4,4,3} or tr{4,4,3}
(1)

(1)

-(2)

73cantitruncated order-4 octahedral (grocth)

t0,1,2{3,4,4} or tr{3,4,4}
(2)

-(1)

(1)

74runcitruncated square (procth)

t0,1,3{4,4,3}
(1)

(1)

(2)

(1)

75runcitruncated order-4 octahedral (prisquah)

t0,1,3{3,4,4}
(1)

(2)

(1)

(1)

76omnitruncated square (gidposquah)

t0,1,2,3{4,4,3}
(1)

(1)

(1)

(1)

Alternated forms
#Honeycomb name
Coxeter diagram
andSchläfli symbol
Cell counts/vertex
and positions in honeycomb
Vertex figurePicture
0
1
2
3
Alt
[83]alternated square

h{4,4,3}
---(6)

(8)

[84]cantic square

h2{4,4,3}
(1)

--(2)

(2)

[85]runcic square

h3{4,4,3}
(1)

--(1)

.
(4)

[86]runcicantic square
(1)

--(1)

(2)

[153]alternated rectified square

hr{4,4,3}

--
{}x{3}
157
--
{}x{6}
Scaliformsnub order-4 octahedral
= =
s{3,4,4}

--
{}v{4}
Scaliformruncisnub order-4 octahedral

s3{3,4,4}




cup-4
152snub square
=
s{4,4,3}

--
{3,3}
Nonuniformsnub rectified order-4 octahedral

sr{3,4,4}

-

irr.{3,3}
Nonuniformalternated runcitruncated square

ht0,1,3{3,4,4}




irr.{}v{4}
Nonuniformomnisnub square

ht0,1,2,3{4,4,3}




irr.{3,3}

[4,4,4] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group: [4,4,4] or.

#Honeycomb name
Coxeter diagram
andSchläfli symbol
Cell counts/vertex
and positions in honeycomb
SymmetryVertex figurePicture
0
1
2
3
77order-4 square (sisquah)

{4,4,4}
---
[4,4,4]

Cube
78truncated order-4 square (tissish)

t0,1{4,4,4} or t{4,4,4}

--
[4,4,4]
79bitruncated order-4 square (dish)

t1,2{4,4,4} or 2t{4,4,4}

--
[[4,4,4]]
80runcinated order-4 square (spiddish)

t0,3{4,4,4}




[[4,4,4]]
81runcitruncated order-4 square (prissish)

t0,1,3{4,4,4}




[4,4,4]
82omnitruncated order-4 square (gipiddish)

t0,1,2,3{4,4,4}




[[4,4,4]]
[62]square (squah)

t1{4,4,4} or r{4,4,4}

--
[4,4,4]
Square tiling
[63]rectified square (risquah)

t0,2{4,4,4} or rr{4,4,4}


-
[4,4,4]
[66]truncated order-4 square (tisquah)

t0,1,2{4,4,4} or tr{4,4,4}


-
[4,4,4]
Alternated constructions
#Honeycomb name
Coxeter diagram
andSchläfli symbol
Cell counts/vertex
and positions in honeycomb
SymmetryVertex figurePicture
0
1
2
3
Alt
[62]Square (squah)
( ) =

(4.4.4.4)
--
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
[63]rectified square (risquah)
=
s2{4,4,4}


-
[4+,4,4]
[77]order-4 square (sisquah)
---

[1+,4,4,4]
=[4,4,4]


Cube
[78]truncated order-4 square (tissish)

(4.8.8)
-
(4.8.8)
-
(4.4.4.4)
[1+,4,4,4]
=[4,4,4]
[79]bitruncated order-4 square (dish)

(4.8.8)
--
(4.8.8)

(4.8.8)
[1+,4,4,4]
=[4,4,4]
[81]runcitruncated order-4 square tiling (prissish)
=
s2,3{4,4,4}




[4,4,4]
[83]alternated square
( ) ↔
hr{4,4,4}

--
[4,1+,4,4]
(4.3.4.3)
[104]quarter order-4 square

q{4,4,4}
[[1+,4,4,4,1+]]
=[[4[4]]]
153alternated rectified square tiling


hrr{4,4,4}


-
[((2+,4,4)),4]
154alternated runcinated order-4 square tiling

ht0,3{4,4,4}




[[(4,4,4,2+)]]
Scaliformsnub order-4 square tiling

s{4,4,4}

--
[4+,4,4]
Nonuniformruncic snub order-4 square tiling

s3{4,4,4}
[4+,4,4]
Nonuniformbisnub order-4 square tiling

2s{4,4,4}

--
[[4,4+,4]]
[152]snub square tiling

sr{4,4,4}


-
[(4,4)+,4]
Nonuniformalternated runcitruncated order-4 square tiling

ht0,1,3{4,4,4}




[((2,4)+,4,4)]
Nonuniformomnisnub order-4 square tiling

ht0,1,2,3{4,4,4}




[[4,4,4]]+

Tridental graphs

[edit]

[3,41,1] family

[edit]

There are 11 forms (of which only 4 are not shared with the [4,4,3] family), generated by ringpermutations of theCoxeter group:

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
0'
3
83alternated square
--
(4.4.4)

(4.4.4.4)

(4.3.4.3)
84cantic square

(3.4.3.4)
-
(3.8.8)

(4.8.8)
85runcic square

(4.4.4.4)
-
(3.4.4.4)

(4.4.4.4)
86runcicantic square

(4.6.6)
-
(3.4.4.4)

(4.8.8)
[63]rectified square (risquah)

(4.4.4)
-
(4.4.4)

(4.4.4.4)
[64]rectified order-4 octahedral (rocth)

(3.4.3.4)
-
(3.4.3.4)

(4.4.4.4)
[65]order-4 octahedral (octh)

(4.4.4.4)
-
(4.4.4.4)
-
[67]truncated order-4 octahedral (tocth)

(4.6.6)
-
(4.6.6)

(4.4.4.4)
[68]bitruncated square (osquah)

(3.8.8)
-
(3.8.8)

(4.8.8)
[70]cantellated order-4 octahedral (srocth)

(3.4.4.4)

(4.4.4)

(3.4.4.4)


(4.4.4.4)
[73]cantitruncated order-4 octahedral (grocth)

(4.6.8)

(4.4.4)

(4.6.8)

(4.8.8)
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
0'
3
Alt
Scaliformsnub order-4 octahedral
= =
s{3,41,1}
--irr.{}v{4}
Nonuniformsnub rectified order-4 octahedral

sr{3,41,1}

(3.3.3.3.4)

(3.3.3)

(3.3.3.3.4)

(3.3.4.3.4)

+(3.3.3)

[4,41,1] family

[edit]

There are 7 forms, (all shared with [4,4,4] family), generated by ringpermutations of theCoxeter group:

#Honeycomb name
Coxeter diagram
Cells by locationVertex figurePicture
0
1
0'
3
[62]Square (squah)
() =

(4.4.4.4)
-
(4.4.4.4)

(4.4.4.4)
[62]Square (squah)
() =

(4.4.4.4)
-
(4.4.4.4)

(4.4.4.4)
[63]rectified square (risquah)
() =

(4.4.4.4)

(4.4.4)

(4.4.4.4)

(4.4.4.4)
[66]truncated square (tisquah)
() =

(4.8.8)

(4.4.4)

(4.8.8)

(4.8.8)
[77]order-4 square (sisquah)

(4.4.4.4)
-
(4.4.4.4)
-
[78]truncated order-4 square (tissish)

(4.8.8)
-
(4.8.8)

(4.4.4.4)
[79]bitruncated order-4 square (dish)

(4.8.8)
-
(4.8.8)

(4.8.8)
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
0'
3
Alt
[77]order-4 square (sisquah)
() =
--

Cube
[78]truncated order-4 square (tissish)
() = ( )
[83]Alternated square
-

ScaliformSnub order-4 square
-
Nonuniform-
Nonuniform-
[153]( )
= ( )
NonuniformSnub square


(3.3.4.3.4)


(3.3.3)


(3.3.4.3.4)


(3.3.4.3.4)

+(3.3.3)

[6,31,1] family

[edit]

There are 11 forms (and only 4 not shared with [6,3,4] family), generated by ringpermutations of theCoxeter group: [6,31,1] or.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
0'
3
87alternated order-6 cubic (ahach)
--(∞)

(3.3.3.3.3)
(∞)

(3.3.3)


(3.6.3.6)
88cantic order-6 cubic (tachach)
(1)

(3.6.3.6)
-(2)

(6.6.6)
(2)

(3.6.6)
89runcic order-6 cubic (birachach)
(1)

(6.6.6)
-(3)

(3.4.6.4)
(1)

(3.3.3)
90runcicantic order-6 cubic (bitachach)
(1)

(3.12.12)
-(2)

(4.6.12)
(1)

(3.6.6)
[16]order-4 hexagonal (shexah)
(4)

(6.6.6)
-(4)

(6.6.6)
-
(3.3.3.3)
[17]rectified order-4 hexagonal (rishexah)
(2)

(3.6.3.6)
-(2)

(3.6.3.6)
(2)

(3.3.3.3)
[18]rectified order-6 cubic (rihach)
(1)

(3.3.3.3.3)
-(1)

(3.3.3.3.3)
(6)

(3.4.3.4)
[20]truncated order-4 hexagonal (tishexah)
(2)

(3.12.12)
-(2)

(3.12.12)
(1)

(3.3.3.3)
[21]bitruncated order-6 cubic (chexah)
(1)

(6.6.6)
-(1)

(6.6.6)
(2)

(4.6.6)
[24]cantellated order-6 cubic (srihach)
(1)

(3.4.6.4)
(2)

(4.4.4)
(1)

(3.4.6.4)
(1)

(3.4.3.4)
[27]cantitruncated order-6 cubic (grihach)
(1)

(4.6.12)
(1)

(4.4.4)
(1)

(4.6.12)
(1)

(4.6.6)
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
0'
3
Alt
[141]alternated order-4 hexagonal (ashexah)

(4.6.6)
Nonuniformbisnub order-4 hexagonal
Nonuniformsnub rectified order-4 hexagonal

(3.3.3.3.6)

(3.3.3)

(3.3.3.3.6)

(3.3.3.3.3)

+(3.3.3)

Cyclic graphs

[edit]

[(4,4,3,3)] family

[edit]

There are 11 forms, 4 unique to this family, generated by ringpermutations of theCoxeter group:, with.

#Honeycomb name
Coxeter diagram
Cells by locationVertex figurePicture
0
1
2
3
91tetrahedral-square
-(6)


(444)
(8)


(333)
(12)


(3434)


(3444)
92cyclotruncated square-tetrahedral


(444)


(488)


(333)


(388)
93cyclotruncated tetrahedral-square
(1)


(3333)
(1)


(444)
(4)


(366)
(4)


(466)
94truncated tetrahedral-square
(1)


(3444)
(1)


(488)
(1)


(366)
(2)


(468)
[64]( ) =
rectified order-4 octahedral (rocth)


(3434)


(4444)


(3434)


(3434)
[65]( ) =
order-4 octahedral (octh)


(3333)
-

(3333)


(3333)
[67]( ) =
truncated order-4 octahedral (tocth)


(466)


(4444)


(3434)


(466)
[83]alternated square
() =


(444)


(4444)
-

(444)

(4.3.4.3)
[84]cantic square
() =


(388)


(488)


(3434)


(388)
[85]runcic square
() =


(3444)


(3434)


(3333)


(3444)
[86]runcicantic square
() =


(468)


(488)


(466)


(468)
#Honeycomb name
Coxeter diagram
Cells by locationVertex figurePicture
0
1
2
3
Alt
Scaliformsnub order-4 octahedral
= =
--irr.{}v{4}
Nonuniform
155alternated tetrahedral-square
r{4,3}

[(4,4,4,3)] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
95cubic-square
(8)

(4.4.4)
-(6)

(4.4.4.4)
(12)

(4.4.4.4)

(3.4.4.4)
96octahedral-square

(3.4.3.4)

(3.3.3.3)
-
(4.4.4.4)

(4.4.4.4)
97cyclotruncated cubic-square
(4)

(3.8.8)
(1)

(3.3.3.3)
(1)

(4.4.4.4)
(4)

(4.8.8)
98cyclotruncated square-cubic
(1)

(4.4.4)
(1)

(4.4.4)
(3)

(4.8.8)
(3)

(4.8.8)
99cyclotruncated octahedral-square
(4)

(4.6.6)
(4)

(4.6.6)
(1)

(4.4.4.4)
(1)

(4.4.4.4)
100rectified cubic-square
(1)

(3.4.3.4)
(2)

(3.4.4.4)
(1)

(4.4.4.4)
(2)

(4.4.4.4)
101truncated cubic-square
(1)

(4.8.8)
(1)

(3.4.4.4)
(2)

(4.8.8)
(1)

(4.8.8)
102truncated octahedral-square
(2)

(4.6.8
(1)

(4.6.6)
(1)

(4.4.4.4)
(1)

(4.8.8)
103omnitruncated octahedral-square
(1)

(4.6.8)
(1)

(4.6.8)
(1)

(4.8.8)
(1)

(4.8.8)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
1
2
3
Alt
156alternated cubic-square
-



(3.4.4.4)
Nonuniformsnub octahedral-square




Nonuniformcyclosnub square-cubic




Nonuniformcyclosnub octahedral-square




Nonuniformomnisnub cubic-square

(3.3.3.3.4)

(3.3.3.3.4)

(3.3.4.3.4)

(3.3.4.3.4)

+(3.3.3)

[(4,4,4,4)] family

[edit]

There are 5 forms, 1 unique, generated by ringpermutations of theCoxeter group:. Repeat constructions are related as:,, and.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
104quarter order-4 square

(4.8.8)

(4.4.4.4)

(4.4.4.4)

(4.8.8)
[62]square (squah)

(4.4.4.4)

(4.4.4.4)

(4.4.4.4)

(4.4.4.4)
[77]order-4 square (sisquah)
( ) =

(4.4.4.4)
-
(4.4.4.4)

(4.4.4.4)

(4.4.4.4)
[78]truncated order-4 square (tissish)
( ) =

(4.8.8)

(4.4.4.4)

(4.8.8)

(4.8.8)
[79]bitruncated order-4 square (dish)

(4.8.8)

(4.8.8)

(4.8.8)

(4.8.8)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
1
2
3
Alt
[83]alternated square
() =
(6)

(4.4.4.4)
(6)

(4.4.4.4)
(6)

(4.4.4.4)
(6)

(4.4.4.4)
(8)

(4.4.4)

(4.3.4.3)
[77]alternated order-4 square (sisquah)

-

158cantic order-4 square




Nonuniformcyclosnub square




Nonuniformsnub order-4 square




Nonuniformbisnub order-4 square

(3.3.4.3.4)

(3.3.4.3.4)

(3.3.4.3.4)

(3.3.4.3.4)

+(3.3.3)

[(6,3,3,3)] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
1
2
3
105tetrahedral-hexagonal
(4)

(3.3.3)
-(4)

(6.6.6)
(6)

(3.6.3.6)

(3.4.3.4)
106tetrahedral-triangular


(3.3.3.3)


(3.3.3)
-

(3.3.3.3.3.3)

(3.4.6.4)
107cyclotruncated tetrahedral-hexagonal
(3)

(3.6.6)
(1)

(3.3.3)
(1)

(6.6.6)
(3)

(6.6.6)
108cyclotruncated hexagonal-tetrahedral
(1)

(3.3.3)
(1)

(3.3.3)
(4)

(3.12.12)
(4)

(3.12.12)
109cyclotruncated tetrahedral-triangular
(6)

(3.6.6)
(6)

(3.6.6)
(1)

(3.3.3.3.3.3)
(1)

(3.3.3.3.3.3)
110rectified tetrahedral-hexagonal
(1)

(3.3.3.3)
(2)

(3.4.3.4)
(1)

(3.6.3.6)
(2)

(3.4.6.4)
111truncated tetrahedral-hexagonal
(1)

(3.6.6)
(1)

(3.4.3.4)
(1)

(3.12.12)
(2)

(4.6.12)
112truncated tetrahedral-triangular
(2)

(4.6.6)
(1)

(3.6.6)
(1)

(3.4.6.4)
(1)

(6.6.6)
113omnitruncated tetrahedral-hexagonal
(1)

(4.6.6)
(1)

(4.6.6)
(1)

(4.6.12)
(1)

(4.6.12)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
1
2
3
Alt
Nonuniformomnisnub tetrahedral-hexagonal

(3.3.3.3.3)

(3.3.3.3.3)

(3.3.3.3.6)

(3.3.3.3.6)

+(3.3.3)

[(6,3,4,3)] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group:

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
1
2
3
114octahedral-hexagonal
(6)

(3.3.3.3)
-(8)

(6.6.6)
(12)

(3.6.3.6)
115cubic-triangular
(∞)

(3.4.3.4)
(∞)

(4.4.4)
-(∞)

(3.3.3.3.3.3)

(3.4.6.4)
116cyclotruncated octahedral-hexagonal
(3)

(4.6.6)
(1)

(4.4.4)
(1)

(6.6.6)
(3)

(6.6.6)
117cyclotruncated hexagonal-octahedral
(1)

(3.3.3.3)
(1)

(3.3.3.3)
(4)

(3.12.12)
(4)

(3.12.12)
118cyclotruncated cubic-triangular
(6)

(3.8.8)
(6)

(3.8.8)
(1)

(3.3.3.3.3.3)
(1)

(3.3.3.3.3.3)
119rectified octahedral-hexagonal
(1)

(3.4.3.4)
(2)

(3.4.4.4)
(1)

(3.6.3.6)
(2)

(3.4.6.4)
120truncated octahedral-hexagonal
(1)

(4.6.6)
(1)

(3.4.4.4)
(1)

(3.12.12)
(2)

(4.6.12)
121truncated cubic-triangular
(2)

(4.6.8)
(1)

(3.8.8)
(1)

(3.4.6.4)
(1)

(6.6.6)
122omnitruncated octahedral-hexagonal
(1)

(4.6.8)
(1)

(4.6.8)
(1)

(4.6.12)
(1)

(4.6.12)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figure
0
1
2
3
Alt
Nonuniformcyclosnub octahedral-hexagonal

(3.3.3.3.3)

(3.3.3)

(3.3.3.3.3.3)

(3.3.3.3.3.3)

irr.{3,4}
Nonuniformomnisnub octahedral-hexagonal

(3.3.3.3.4)

(3.3.3.3.4)

(3.3.3.3.6)

(3.3.3.3.6)

irr.{3,3}

[(6,3,5,3)] family

[edit]

There are 9 forms, generated by ringpermutations of theCoxeter group:

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
123icosahedral-hexagonal
(6)

(3.3.3.3.3)
-(8)

(6.6.6)
(12)

(3.6.3.6)

3.4.5.4
124dodecahedral-triangular
(30)

(3.5.3.5)
(20)

(5.5.5)
-(12)

(3.3.3.3.3.3)

(3.4.6.4)
125cyclotruncated icosahedral-hexagonal
(3)

(5.6.6)
(1)

(5.5.5)
(1)

(6.6.6)
(3)

(6.6.6)
126cyclotruncated hexagonal-icosahedral
(1)

(3.3.3.3.3)
(1)

(3.3.3.3.3)
(5)

(3.12.12)
(5)

(3.12.12)
127cyclotruncated dodecahedral-triangular
(6)

(3.10.10)
(6)

(3.10.10)
(1)

(3.3.3.3.3.3)
(1)

(3.3.3.3.3.3)
128rectified icosahedral-hexagonal
(1)

(3.5.3.5)
(2)

(3.4.5.4)
(1)

(3.6.3.6)
(2)

(3.4.6.4)
129truncated icosahedral-hexagonal
(1)

(5.6.6)
(1)

(3.5.5.5)
(1)

(3.12.12)
(2)

(4.6.12)
130truncated dodecahedral-triangular
(2)

(4.6.10)
(1)

(3.10.10)
(1)

(3.4.6.4)
(1)

(6.6.6)
131omnitruncated icosahedral-hexagonal
(1)

(4.6.10)
(1)

(4.6.10)
(1)

(4.6.12)
(1)

(4.6.12)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
Alt
Nonuniformomnisnub icosahedral-hexagonal

(3.3.3.3.5)

(3.3.3.3.5)

(3.3.3.3.6)

(3.3.3.3.6)

+(3.3.3)

[(6,3,6,3)] family

[edit]

There are 6 forms, generated by ringpermutations of theCoxeter group:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
132hexagonal-triangular

(3.3.3.3.3.3)
-
(6.6.6)

(3.6.3.6)

(3.4.6.4)
133cyclotruncated hexagonal-triangular
(1)

(3.3.3.3.3.3)
(1)

(3.3.3.3.3.3)
(3)

(3.12.12)
(3)

(3.12.12)
134cyclotruncated triangular-hexagonal
(1)

(3.6.3.6)
(2)

(3.4.6.4)
(1)

(3.6.3.6)
(2)

(3.4.6.4)
135rectified hexagonal-triangular
(1)

(6.6.6)
(1)

(3.4.6.4)
(1)

(3.12.12)
(2)

(4.6.12)
136truncated hexagonal-triangular
(1)

(4.6.12)
(1)

(4.6.12)
(1)

(4.6.12)
(1)

(4.6.12)
[16]order-4 hexagonal tiling (shexah)

=
(3)

(6.6.6)
(1)

(6.6.6)
(1)

(6.6.6)
(3)

(6.6.6)

(3.3.3.3)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
Alt
[141]alternated order-4 hexagonal (ashexah)

(3.3.3.3.3.3)

(3.3.3.3.3.3)

(3.3.3.3.3.3)

(3.3.3.3.3.3)

+(3.3.3.3)

(4.6.6)
Nonuniformcyclocantisnub hexagonal-triangular
Nonuniformcycloruncicantisnub hexagonal-triangular
Nonuniformsnub rectified hexagonal-triangular

(3.3.3.3.6)

(3.3.3.3.6)

(3.3.3.3.6)

(3.3.3.3.6)

+(3.3.3)

Loop-n-tail graphs

[edit]

[3,3[3]] family

[edit]

There are 11 forms, 4 unique, generated by ringpermutations of theCoxeter group: [3,3[3]] or. 7 are half symmetry forms of [3,3,6]:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figurePicture
0
1
0'
3
137alternated hexagonal (ahexah)
() =
--
(3.3.3)

(3.3.3.3.3.3)

(3.6.6)
138cantic hexagonal (tahexah)
(1)

(3.3.3.3)
-(2)

(3.6.6)
(2)

(3.6.3.6)
139runcic hexagonal (birahexah)
(1)

(4.4.4)
(1)

(4.4.3)
(3)

(3.4.3.4)
(1)

(3.3.3.3.3.3)
140runcicantic hexagonal (bitahexah)
(1)

(3.10.10)
(1)

(4.4.3)
(2)

(4.6.6)
(1)

(3.6.3.6)
[2]rectified hexagonal (rihexah)
(1)

(3.3.3)
-(1)

(3.3.3)
(6)

(3.6.3.6)

Triangular prism
[3]rectified order-6 tetrahedral (rath)
(2)

(3.3.3.3)
-(2)

(3.3.3.3)
(2)

(3.3.3.3.3.3)

Hexagonal prism
[4]order-6 tetrahedral (thon)
(4)

(4.4.4)
-(4)

(4.4.4)
-
[8]cantellated order-6 tetrahedral (srath)
(1)

(3.3.3.3)
(2)

(4.4.6)
(1)

(3.3.3.3)
(1)

(3.6.3.6)
[9]bitruncated order-6 tetrahedral (tehexah)
(1)

(3.6.6)
-(1)

(3.6.6)
(2)

(6.6.6)
[10]truncated order-6 tetrahedral (tath)
(2)

(3.10.10)
-(2)

(3.10.10)
(1)

(3.6.3.6)
[14]cantitruncated order-6 tetrahedral (grath)
(1)

(4.6.6)
(1)

(4.4.6)
(1)

(4.6.6)
(1)

(6.6.6)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
0'
3
Alt
Nonuniformsnub rectified order-6 tetrahedral

(3.3.3.3.3)

(3.3.3.3)

(3.3.3.3.3)

(3.3.3.3.3.3)

+(3.3.3)

[4,3[3]] family

[edit]

There are 11 forms, 4 unique, generated by ringpermutations of theCoxeter group: [4,3[3]] or. 7 are half symmetry forms of [4,3,6]:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figurePicture
0
1
0'
3
141alternated order-4 hexagonal (ashexah)
--
(3.3.3.3)

(3.3.3.3.3.3)

(4.6.6)
142cantic order-4 hexagonal (tashexah)
(1)

(3.4.3.4)
-(2)

(4.6.6)
(2)

(3.6.3.6)
143runcic order-4 hexagonal (birashexah)
(1)

(4.4.4)
(1)

(4.4.3)
(3)

(3.4.4.4)
(1)

(3.3.3.3.3.3)
144runcicantic order-4 hexagonal (bitashexah)
(1)

(3.8.8)
(1)

(4.4.3)
(2)

(4.6.8)
(1)

(3.6.3.6)
[16]order-4 hexagonal (shexah)
(4)

(4.4.4)
-(4)

(4.4.4)
-
[17]rectified order-4 hexagonal (rishexah)
(1)

(3.3.3.3)
-(1)

(3.3.3.3)
(6)

(3.6.3.6)
[18]rectified order-6 cubic (rihach)
(2)

(3.4.3.4)
-(2)

(3.4.3.4)
(2)

(3.3.3.3.3.3)
[21]bitruncated order-4 hexagonal (chexah)
(1)

(4.6.6)
-(1)

(4.6.6)
(2)

(6.6.6)
[22]truncated order-6 cubic (thach)
(2)

(3.8.8)
-(2)

(3.8.8)
(1)

(3.6.3.6)
[23]cantellated order-4 hexagonal (srishexah)
(1)

(3.4.4.4)
(2)

(4.4.6)
(1)

(3.4.4.4)
(1)

(3.6.3.6)
[26]cantitruncated order-4 hexagonal (grishexah)
(1)

(4.6.8)
(1)

(4.4.6)
(1)

(4.6.8)
(1)

(6.6.6)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figure
0
1
0'
3
Alt
Nonuniformsnub rectified order-4 hexagonal

(3.3.3.3.4)

(3.3.3.3)

(3.3.3.3.4)

(3.3.3.3.3.3)

+(3.3.3)

[5,3[3]] family

[edit]

There are 11 forms, 4 unique, generated by ringpermutations of theCoxeter group: [5,3[3]] or. 7 are half symmetry forms of [5,3,6]:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figurePicture
0
1
0'
3
145alternated order-5 hexagonal (aphexah)
--
(3.3.3.3.3)

(3.3.3.3.3.3)

(3.6.3.6)
146cantic order-5 hexagonal (taphexah)
(1)

(3.5.3.5)
-(2)

(5.6.6)
(2)

(3.6.3.6)
147runcic order-5 hexagonal (biraphexah)
(1)

(5.5.5)
(1)

(4.4.3)
(3)

(3.4.5.4)
(1)

(3.3.3.3.3.3)
148runcicantic order-5 hexagonal (bitaphexah)
(1)

(3.10.10)
(1)

(4.4.3)
(2)

(4.6.10)
(1)

(3.6.3.6)
[32]rectified order-5 hexagonal (riphexah)
(1)

(3.3.3.3.3)
-(1)

(3.3.3.3.3)
(6)

(3.6.3.6)
[33]rectified order-6 dodecahedral (rihed)
(2)

(3.5.3.5)
-(2)

(3.5.3.5)
(2)

(3.3.3.3.3.3)
[34]Order-5 hexagonal (hedhon)
(4)

(5.5.5)
-(4)

(5.5.5)
-
[40]truncated order-6 dodecahedral (thed)
(2)

(3.10.10)
-(2)

(3.10.10)
(1)

(3.6.3.6)
[36]cantellated order-5 hexagonal (sriphexah)
(1)

(3.4.5.4)
(2)

(6.4.4)
(1)

(3.4.5.4)
(1)

(3.6.3.6)
[39]bitruncated order-5 hexagonal (dohexah)
(1)

(5.6.6)
-(1)

(5.6.6)
(2)

(6.6.6)
[41]cantitruncated order-5 hexagonal (griphexah)
(1)

(4.6.10)
(1)

(6.4.4)
(1)

(4.6.10)
(1)

(6.6.6)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figurePicture
0
1
0'
3
Alt
Nonuniformsnub rectified order-5 hexagonal

(3.3.3.3.5)

(3.3.3)

(3.3.3.3.5)

(3.3.3.3.3.3)

+(3.3.3)

[6,3[3]] family

[edit]

There are 11 forms, 4 unique, generated by ringpermutations of theCoxeter group: [6,3[3]] or. 7 are half symmetry forms of [6,3,6]:.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figurePicture
0
1
0'
3
149runcic order-6 hexagonal
(1)

(6.6.6)
(1)

(4.4.3)
(3)

(3.4.6.4)
(1)

(3.3.3.3.3.3)
150runcicantic order-6 hexagonal
(1)

(3.12.12)
(1)

(4.4.3)
(2)

(4.6.12)
(1)

(3.6.3.6)
[1]hexagonal (hexah)
(1)

(6.6.6)
-(1)

(6.6.6)
(2)

(6.6.6)
[46]order-6 hexagonal (hihexah)
(4)

(6.6.6)
-(4)

(6.6.6)
-
[47]rectified order-6 hexagonal (rihihexah)
(2)

(3.6.3.6)
-(2)

(3.6.3.6)
(2)

(3.3.3.3.3.3)
[47]rectified order-6 hexagonal (rihihexah)
(1)

(3.3.3.3.3.3)
-(1)

(3.3.3.3.3.3)
(6)

(3.6.3.6)
[48]truncated order-6 hexagonal (thihexah)
(2)

(3.12.12)
-(2)

(3.12.12)
(1)

(3.3.3.3.3.3)
[49]cantellated order-6 hexagonal (srihihexah)
(1)

(3.4.6.4)
(2)

(6.4.4)
(1)

(3.4.6.4)
(1)

(3.6.3.6)
[51]cantitruncated order-6 hexagonal (grihihexah)
(1)

(4.6.12)
(1)

(6.4.4)
(1)

(4.6.12)
(1)

(6.6.6)
[54]triangular tiling honeycomb (trah)
( ) =
--
(3.3.3.3.3.3)

(3.3.3.3.3.3)

(6.6.6)
[55]cantic order-6 hexagonal (ritrah)
( ) =
(1)

(3.6.3.6)
-(2)

(6.6.6)
(2)

(3.6.3.6)
Alternated forms
#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
vertex figurePicture
0
1
0'
3
Alt
[54]triangular tiling honeycomb (trah)
( ) =

-
-
(6.6.6)
[137]alternated hexagonal (ahexah)
( ) = ( )

-


+(3.6.6)

(3.6.6)
[47]rectified order-6 hexagonal (rihihexah)

(3.6.3.6)
-
(3.6.3.6)

(3.3.3.3.3.3)
[55]cantic order-6 hexagonal (ritrah)
( ) = ( ) =
(1)

(3.6.3.6)
-(2)

(6.6.6)
(2)

(3.6.3.6)
Nonuniformsnub rectified order-6 hexagonal


(3.3.3.3.6)


(3.3.3.3)


(3.3.3.3.6)


(3.3.3.3.3.3)

+(3.3.3)

Multicyclic graphs

[edit]

[3[ ]×[ ]] family

[edit]

There are 8 forms, 1 unique, generated by ringpermutations of theCoxeter group:. Two are duplicated as, two as, and three as.

#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
151Quarter order-4 hexagonal (quishexah)




[17]rectified order-4 hexagonal (rishexah)





(4.4.4)
[18]rectified order-6 cubic (rihach)





(6.4.4)
[21]bitruncated order-6 cubic (chexah)




[87]alternated order-6 cubic (ahach)
-



(3.6.3.6)
[88]cantic order-6 cubic (tachach)




[141]alternated order-4 hexagonal (ashexah)

-


(4.6.6)
[142]cantic order-4 hexagonal (tashexah)




#Honeycomb name
Coxeter diagram
Cells by location
(and count around each vertex)
Vertex figurePicture
0
1
2
3
Alt
Nonuniformbisnub order-6 cubic





irr. {3,3}

[3[3,3]] family

[edit]

There are 4 forms, 0 unique, generated by ringpermutations of theCoxeter group:. They are repeated in four families: (index 2 subgroup), (index 4 subgroup), (index 6 subgroup), and (index 24 subgroup).

#Name
Coxeter diagram
0123vertex figurePicture
[1]hexagonal (hexah)





{3,3}
[47]rectified order-6 hexagonal (rihihexah)





t{2,3}
[54]triangular tiling honeycomb (trah)
( ) =

-


t{3[3]}
[55]rectified triangular (ritrah)





t{2,3}
#Name
Coxeter diagram
0123Altvertex figurePicture
[137]alternated hexagonal (ahexah)
( ) =


s{3[3]}


s{3[3]}


s{3[3]}


s{3[3]}


{3,3}

(4.6.6)

Summary enumerations by family

[edit]

Linear graphs

[edit]
Paracompact hyperbolic enumeration
GroupExtended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
R¯3{\displaystyle {\bar {R}}_{3}}
[4,4,3]
[4,4,3]
15 | | | |
| | | |
| | | |
[1+,4,1+,4,3+](6) (↔)
(↔)
|
|
[4,4,3]+(1)
N¯3{\displaystyle {\bar {N}}_{3}}
[4,4,4]
[4,4,4]
3 | |[1+,4,1+,4,1+,4,1+](3) (↔ =)
|
[4,4,4]
(3) | |[1+,4,1+,4,1+,4,1+](3) (↔)
|
[2+[4,4,4]]
3 | |[2+[(4,4+,4,2+)]](2) |
[2+[4,4,4]]+(1)
V¯3{\displaystyle {\bar {V}}_{3}}
[6,3,3]
[6,3,3]
15 | | | |
| | | |
| | | |
[1+,6,(3,3)+](2) (↔)
[6,3,3]+(1)
BV¯3{\displaystyle {\bar {BV}}_{3}}
[6,3,4]
[6,3,4]
15 | | | |
| | | |
| | | |
[1+,6,3+,4,1+](6) (↔)
(↔)
|
|
[6,3,4]+(1)
HV¯3{\displaystyle {\bar {HV}}_{3}}
[6,3,5]
[6,3,5]
15 | | | |
| | | |
| | | |
[1+,6,(3,5)+](2) (↔)
[6,3,5]+(1)
Y¯3{\displaystyle {\bar {Y}}_{3}}
[3,6,3]
[3,6,3]
5 | | | |
[3,6,3]
(1)[2+[3+,6,3+]](1)
[2+[3,6,3]]
3 | |[2+[3,6,3]]+(1)
Z¯3{\displaystyle {\bar {Z}}_{3}}
[6,3,6]
[6,3,6]
6 | |
| |
[1+,6,3+,6,1+](2) (↔)
[2+[6,3,6]]
(1)[2+[(6,3+,6,2+)]](2)
[2+[6,3,6]]
2 |
[2+[6,3,6]]+(1)

Tridental graphs

[edit]
Paracompact hyperbolic enumeration
GroupExtended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
DV¯3{\displaystyle {\bar {DV}}_{3}}
[6,31,1]
[6,31,1]4 | | |
[1[6,31,1]]=[6,3,4]
(7) | | | | | |[1[1+,6,31,1]]+(2) (↔)
[1[6,31,1]]+=[6,3,4]+(1)
O¯3{\displaystyle {\bar {O}}_{3}}
[3,41,1]
[3,41,1]4 | | |[3+,41,1]+(2)
[1[3,41,1]]=[3,4,4]
(7) | | | | | |[1[3+,41,1]]+(2) |
[1[3,41,1]]+(1)
M¯3{\displaystyle {\bar {M}}_{3}}
[41,1,1]
[41,1,1]0(none)
[1[41,1,1]]=[4,4,4]
(4) | | |[1[1+,4,1+,41,1]]+=[(4,1+,4,1+,4,2+)](4) (↔)
| |
[3[41,1,1]]=[4,4,3]
(3) | |[3[1+,41,1,1]]+=[1+,4,1+,4,3+](2) (↔)
[3[41,1,1]]+=[4,4,3]+(1)

Cyclic graphs

[edit]
Paracompact hyperbolic enumeration
GroupExtended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
CR^3{\displaystyle {\widehat {CR}}_{3}}
[(4,4,4,3)]
[(4,4,4,3)]6 | | | | |[(4,1+,4,1+,4,3+)](2)
[2+[(4,4,4,3)]]
3 | |[2+[(4,4+,4,3+)]](2) |
[2+[(4,4,4,3)]]+(1)
RR^3{\displaystyle {\widehat {RR}}_{3}}
[4[4]]
[4[4]](none)
[2+[4[4]]]
1[2+[(4+,4)[2]]](1)
[1[4[4]]]=[4,41,1]
(2)[(1+,4)[4]](2)
[2[4[4]]]=[4,4,4]
(1)[2+[(1+,4,4)[2]]](1)
[(2+,4)[4[4]]]=[2+[4,4,4]]
=
(1)[(2+,4)[4[4]]]+
= [2+[4,4,4]]+
(1)
AV^3{\displaystyle {\widehat {AV}}_{3}}
[(6,3,3,3)]
[(6,3,3,3)]6 | | | | |
[2+[(6,3,3,3)]]
3 | |[2+[(6,3,3,3)]]+(1)
BV^3{\displaystyle {\widehat {BV}}_{3}}
[(3,4,3,6)]
[(3,4,3,6)]6 | | | | |[(3+,4,3+,6)](1)
[2+[(3,4,3,6)]]
3 | |[2+[(3,4,3,6)]]+(1)
HV^3{\displaystyle {\widehat {HV}}_{3}}
[(3,5,3,6)]
[(3,5,3,6)]6 | | | | |
[2+[(3,5,3,6)]]
3 | |[2+[(3,5,3,6)]]+(1)
VV^3{\displaystyle {\widehat {VV}}_{3}}
[(3,6)[2]]
[(3,6)[2]]2 |
[2+[(3,6)[2]]]
1
[2+[(3,6)[2]]]
1
[2+[(3,6)[2]]]
=
(1)[2+[(3+,6)[2]]](1)
[(2,2)+[(3,6)[2]]]
1[(2,2)+[(3,6)[2]]]+(1)
Paracompact hyperbolic enumeration
GroupExtended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
BR^3{\displaystyle {\widehat {BR}}_{3}}
[(3,3,4,4)]
[(3,3,4,4)]4 | | |
[1[(4,4,3,3)]]=[3,41,1]
(7) | | | | | |[1[(3,3,4,1+,4)]]+
= [3+,41,1]+
(2) (=)
[1[(3,3,4,4)]]+
= [3,41,1]+
(1)
DP¯3{\displaystyle {\bar {DP}}_{3}}
[3[ ]x[ ]]
[3[ ]x[ ]]1
[1[3[ ]x[ ]]]=[6,31,1]
(2) |
[1[3[ ]x[ ]]]=[4,3[3]]
(2) |
[2[3[ ]x[ ]]]=[6,3,4]
(3) | |[2[3[ ]x[ ]]]+
=[6,3,4]+
(1)
PP¯3{\displaystyle {\bar {PP}}_{3}}
[3[3,3]]

[3[3,3]]0(none)
[1[3[3,3]]]=[6,3[3]]
0(none)
[3[3[3,3]]]=[3,6,3]
(2) |
[2[3[3,3]]]=[6,3,6]
(1)
[(3,3)[3[3,3]]]=[6,3,3]
=
(1)[(3,3)[3[3,3]]]+
= [6,3,3]+
(1)

Loop-n-tail graphs

[edit]

Symmetry in these graphs can be doubled by adding a mirror: [1[n,3[3]]] = [n,3,6]. Therefore ring-symmetry graphs are repeated in the linear graph families.

Paracompact hyperbolic enumeration
GroupExtended
symmetry
HoneycombsChiral
extended
symmetry
Alternation honeycombs
P¯3{\displaystyle {\bar {P}}_{3}}
[3,3[3]]
[3,3[3]]4 | | |
[1[3,3[3]]]=[3,3,6]
(7) | | | | | |[1[3,3[3]]]+
= [3,3,6]+
(1)
BP¯3{\displaystyle {\bar {BP}}_{3}}
[4,3[3]]
[4,3[3]]4 | | |
[1[4,3[3]]]=[4,3,6]
(7) | | | | | |[1+,4,(3[3])+](2)
[4,3[3]]+(1)
HP¯3{\displaystyle {\bar {HP}}_{3}}
[5,3[3]]
[5,3[3]]4 | | |
[1[5,3[3]]]=[5,3,6]
(7) | | | | | |[1[5,3[3]]]+
= [5,3,6]+
(1)
VP¯3{\displaystyle {\bar {VP}}_{3}}
[6,3[3]]
[6,3[3]]2 |
[6,3[3]] =(2)() | ( =)
[(3,3)[1+,6,3[3]]]=[6,3,3]
(1)[(3,3)[1+,6,3[3]]]+(1)
[1[6,3[3]]]=[6,3,6]
(6) | | | | |[3[1+,6,3[3]]]+
= [3,6,3]+
(1) (= )
[1[6,3[3]]]+
= [6,3,6]+
(1)

See also

[edit]

Notes

[edit]
  1. ^P. Tumarkin,Hyperbolic Coxeter n-polytopes with n+2 facets (2003)

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Paracompact_uniform_honeycombs&oldid=1324116066#Regular_paracompact_honeycombs"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp