Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Alternant matrix

From Wikipedia, the free encyclopedia
Not to be confused withalternating sign matrix.

Inlinear algebra, analternant matrix is amatrix formed by applying a finite list of functions pointwise to a fixed column of inputs. Analternant determinant is thedeterminant of a square alternant matrix.

Generally, iff1,f2,,fn{\displaystyle f_{1},f_{2},\dots ,f_{n}} are functions from a setX{\displaystyle X} to a fieldF{\displaystyle F}, andα1,α2,,αmX{\displaystyle {\alpha _{1},\alpha _{2},\ldots ,\alpha _{m}}\in X}, then the alternant matrix has sizem×n{\displaystyle m\times n} and is defined by

M=[f1(α1)f2(α1)fn(α1)f1(α2)f2(α2)fn(α2)f1(α3)f2(α3)fn(α3)f1(αm)f2(αm)fn(αm)]{\displaystyle M={\begin{bmatrix}f_{1}(\alpha _{1})&f_{2}(\alpha _{1})&\cdots &f_{n}(\alpha _{1})\\f_{1}(\alpha _{2})&f_{2}(\alpha _{2})&\cdots &f_{n}(\alpha _{2})\\f_{1}(\alpha _{3})&f_{2}(\alpha _{3})&\cdots &f_{n}(\alpha _{3})\\\vdots &\vdots &\ddots &\vdots \\f_{1}(\alpha _{m})&f_{2}(\alpha _{m})&\cdots &f_{n}(\alpha _{m})\\\end{bmatrix}}}

or, more compactly,Mij=fj(αi){\displaystyle M_{ij}=f_{j}(\alpha _{i})}. (Some authors use thetranspose of the above matrix.) Examples of alternant matrices includeVandermonde matrices, for whichfj(α)=αj1{\displaystyle f_{j}(\alpha )=\alpha ^{j-1}}, andMoore matrices, for whichfj(α)=αqj1{\displaystyle f_{j}(\alpha )=\alpha ^{q^{j-1}}}.

Properties

[edit]

Applications

[edit]

See also

[edit]

References

[edit]
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Alternant_matrix&oldid=1285634018"
Categories:

[8]ページ先頭

©2009-2026 Movatter.jp