Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

AlphaGo Zero

From Wikipedia, the free encyclopedia
Artificial intelligence that plays Go

Part ofa series on
Artificial intelligence (AI)
Glossary

AlphaGo Zero is a version ofDeepMind'sGo softwareAlphaGo. AlphaGo's team published an article inNature in October 2017 introducing AlphaGo Zero, a version created without using data from human games, and stronger than any previous version.[1] By playing games against itself, AlphaGo Zero: surpassed the strength ofAlphaGo Lee in three days by winning 100 games to 0; reached the level ofAlphaGo Master in 21 days; and exceeded all previous versions in 40 days.[2]

Trainingartificial intelligence (AI) withoutdatasets derived fromhuman experts has significant implications for the development of AI with superhuman skills, as expert data is "often expensive, unreliable, or simply unavailable."[3]Demis Hassabis, the co-founder and CEO of DeepMind, said that AlphaGo Zero was so powerful because it was "no longer constrained by the limits of human knowledge".[4] Furthermore, AlphaGo Zero performed better than standarddeep reinforcement learning models (such asDeep Q-Network implementations[5]) due to its integration ofMonte Carlo tree search.David Silver, one of the first authors of DeepMind's papers published inNature on AlphaGo, said that it is possible to have generalized AI algorithms by removing the need to learn from humans.[6]

Google later developedAlphaZero, a generalized version of AlphaGo Zero that could playchess andshōgi in addition to Go.[7] In December 2017, AlphaZero beat the 3-day version of AlphaGo Zero by winning 60 games to 40, and with 8 hours of training it outperformed AlphaGo Lee on anElo scale. AlphaZero also defeated a top chess program (Stockfish) and a top Shōgi program (Elmo).[8][9]

Architecture

[edit]

The network in AlphaGo Zero is aResNet with two heads.[1]: Appendix: Methods 

  • The stem of the network takes as input a 17x19x19 tensor representation of the Go board.
    • 8 channels are the positions of the current player's stones from the last eight time steps. (1 if there is a stone, 0 otherwise. If the time step go before the beginning of the game, then 0 in all positions.)
    • 8 channels are the positions of the other player's stones from the last eight time steps.
    • 1 channel is all 1 if black is to move, and 0 otherwise.
  • The body is aResNet with either 20 or 40 residual blocks and 256 channels.
  • There are two heads, a policy head and a value head.
    • Policy head outputs alogit array of size19×19+1{\displaystyle 19\times 19+1}, representing the logit of making a move in one of the points, plus the logit ofpassing.
    • Value head outputs a number in the range(1,+1){\displaystyle (-1,+1)}, representing the expected score for the current player. -1 represents current player losing, and +1 winning.

Training

[edit]

AlphaGo Zero's neural network was trained usingTensorFlow, with 64 GPU workers and 19 CPU parameter servers.Only fourTPUs were used for inference. Theneural network initially knew nothing aboutGo beyond therules. Unlike earlier versions of AlphaGo, Zero only perceived the board's stones, rather than having some rare human-programmed edge cases to help recognize unusual Go board positions. The AI engaged inreinforcement learning, playing against itself until it could anticipate its own moves and how those moves would affect the game's outcome.[10] In the first three days AlphaGo Zero played 4.9 million games against itself in quick succession.[11] It appeared to develop the skills required to beat top humans within just a few days, whereas the earlier AlphaGo took months of training to achieve the same level.[12]

According to Epoch.ai, training cost 3e23 FLOPs.[13]

For comparison, the researchers also trained a version of AlphaGo Zero using human games, AlphaGo Master, and found that it learned more quickly, but actually performed more poorly in the long run.[14] DeepMind submitted its initial findings in a paper toNature in April 2017, which was then published in October 2017.[1]

Hardware cost

[edit]

The hardware cost for a single AlphaGo Zero system in 2017, including the four TPUs, has been quoted as around $25 million.[15]

Applications

[edit]

According to Hassabis, AlphaGo's algorithms are likely to be of the most benefit to domains that require an intelligent search through an enormous space of possibilities, such asprotein folding (seeAlphaFold) or accurately simulating chemical reactions.[16] AlphaGo's techniques are probably less useful in domains that are difficult to simulate, such as learning how to drive a car.[17] DeepMind stated in October 2017 that it had already started active work on attempting to use AlphaGo Zero technology for protein folding, and stated it would soon publish new findings.[18][19]

Reception

[edit]

AlphaGo Zero was widely regarded as a significant advance, even when compared with its groundbreaking predecessor, AlphaGo.Oren Etzioni of theAllen Institute for Artificial Intelligence called AlphaGo Zero "a very impressive technical result" in "both their ability to do it—and their ability to train the system in 40 days, on four TPUs".[10]The Guardian called it a "major breakthrough for artificial intelligence", citing Eleni Vasilaki ofSheffield University and Tom Mitchell ofCarnegie Mellon University, who called it an impressive feat and an “outstanding engineering accomplishment" respectively.[17]Mark Pesce of the University of Sydney called AlphaGo Zero "a big technological advance" taking us into "undiscovered territory".[20]

Gary Marcus, a psychologist atNew York University, has cautioned that for all we know, AlphaGo may contain "implicit knowledge that the programmers have about how to construct machines to play problems like Go" and will need to be tested in other domains before being sure that its base architecture is effective at much more than playing Go. In contrast, DeepMind is "confident that this approach is generalisable to a large number of domains".[11]

In response to the reports, South Korean Go professionalLee Sedol said, "The previous version of AlphaGo wasn’t perfect, and I believe that’s why AlphaGo Zero was made."On the potential for AlphaGo's development, Lee said he will have to wait and see but also said it will affect young Go players.Mok Jin-seok, who directs the South Korean national Go team, said the Go world has already been imitating the playing styles of previous versions of AlphaGo and creating new ideas from them, and he is hopeful that new ideas will come out from AlphaGo Zero. Mok also added that general trends in the Go world are now being influenced by AlphaGo's playing style. "At first, it was hard to understand and I almost felt like I was playing against an alien. However, having had a great amount of experience, I’ve become used to it," Mok said. "We are now past the point where we debate the gap between the capability of AlphaGo and humans. It’s now between computers."Mok has reportedly already begun analyzing the playing style of AlphaGo Zero along with players from the national team."Though having watched only a few matches, we received the impression that AlphaGo Zero plays more like a human than its predecessors," Mok said.[21]Chinese Go professionalKe Jie commented on the remarkable accomplishments of the new program: "A pure self-learning AlphaGo is the strongest. Humans seem redundant in front of its self-improvement."[22]

Comparison with predecessors

[edit]
Configuration and strength[23]
VersionsPlaying hardware[24]Elo ratingMatches
AlphaGo Fan176GPUs,[2] distributed3,144[1]5:0 againstFan Hui
AlphaGo Lee48TPUs,[2] distributed3,739[1]4:1 againstLee Sedol
AlphaGo Master4 TPUs,[2] single machine4,858[1]60:0 against professional players;

Future of Go Summit

AlphaGo Zero(40 days)4 TPUs,[2] single machine5,185[1]100:0 against AlphaGo Lee

89:11 against AlphaGo Master

AlphaZero(34 hours)4 TPUs, single machine[8]4,430 (est.)[8]60:40 against a 3-day AlphaGo Zero

AlphaZero

[edit]
Main article:AlphaZero

On 5 December 2017, DeepMind team released a preprint onarXiv, introducing AlphaZero, a program using generalized AlphaGo Zero's approach, which achieved within 24 hours a superhuman level of play inchess,shogi, andGo, defeating world-champion programs,Stockfish,Elmo, and 3-day version of AlphaGo Zero in each case.[8]

AlphaZero (AZ) is a more generalized variant of the AlphaGo Zero (AGZ)algorithm, and is able to play shogi and chess as well as Go. Differences between AZ and AGZ include:[8]

  • AZ has hard-coded rules for setting searchhyperparameters.
  • The neural network is now updated continually.
  • Chess (unlike Go) can end in a tie; therefore AZ can take into account the possibility of a tie game.

Anopen source program,Leela Zero, based on the ideas from the AlphaGo papers is available. It uses aGPU instead of theTPUs recent versions of AlphaGo rely on.

References

[edit]
  1. ^abcdefgSilver, David; Schrittwieser, Julian; Simonyan, Karen; Antonoglou, Ioannis;Huang, Aja; Guez, Arthur; Hubert, Thomas; Baker, Lucas; Lai, Matthew; Bolton, Adrian;Chen, Yutian; Lillicrap, Timothy;Fan, Hui; Sifre, Laurent; Driessche, George van den; Graepel, Thore;Hassabis, Demis (19 October 2017)."Mastering the game of Go without human knowledge"(PDF).Nature.550 (7676):354–359.Bibcode:2017Natur.550..354S.doi:10.1038/nature24270.ISSN 0028-0836.PMID 29052630.S2CID 205261034.Archived(PDF) from the original on 18 July 2018. Retrieved2 September 2019.Closed access icon
  2. ^abcdeHassabis, Demis;Siver, David (18 October 2017)."AlphaGo Zero: Learning from scratch".DeepMind official website. Archived fromthe original on 19 October 2017. Retrieved19 October 2017.
  3. ^"Google's New AlphaGo Breakthrough Could Take Algorithms Where No Humans Have Gone".Yahoo! Finance. 19 October 2017.Archived from the original on 19 October 2017. Retrieved19 October 2017.
  4. ^Knapton, Sarah (18 October 2017)."AlphaGo Zero: Google DeepMind supercomputer learns 3,000 years of human knowledge in 40 days".The Telegraph.Archived from the original on 19 October 2017. Retrieved19 October 2017.
  5. ^mnj12 (7 July 2021),mnj12/chessDeepLearning, retrieved7 July 2021{{citation}}: CS1 maint: numeric names: authors list (link)
  6. ^"DeepMind AlphaGo Zero learns on its own without meatbag intervention".ZDNet. 19 October 2017.Archived from the original on 20 October 2017. Retrieved20 October 2017.
  7. ^Silver, David; Hubert, Thomas; Schrittwieser, Julian (2017)."Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm"(PDF). Retrieved4 August 2025.
  8. ^abcdeSilver, David; Hubert, Thomas; Schrittwieser, Julian; Antonoglou, Ioannis; Lai, Matthew; Guez, Arthur; Lanctot, Marc; Sifre, Laurent;Kumaran, Dharshan; Graepel, Thore; Lillicrap, Timothy; Simonyan, Karen;Hassabis, Demis (5 December 2017). "Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm".arXiv:1712.01815 [cs.AI].
  9. ^Knapton, Sarah; Watson, Leon (6 December 2017)."Entire human chess knowledge learned and surpassed by DeepMind's AlphaZero in four hours".The Telegraph.Archived from the original on 2 December 2020. Retrieved5 April 2018.
  10. ^abGreenemeier, Larry."AI versus AI: Self-Taught AlphaGo Zero Vanquishes Its Predecessor".Scientific American.Archived from the original on 19 October 2017. Retrieved20 October 2017.
  11. ^ab"Computer Learns To Play Go At Superhuman Levels 'Without Human Knowledge'".NPR. 18 October 2017.Archived from the original on 20 October 2017. Retrieved20 October 2017.
  12. ^"Google's New AlphaGo Breakthrough Could Take Algorithms Where No Humans Have Gone".Fortune. 19 October 2017.Archived from the original on 19 October 2017. Retrieved20 October 2017.
  13. ^"Data on Notable AI Models".Epoch AI. 19 June 2024. Retrieved29 November 2024.
  14. ^"This computer program can beat humans at Go—with no human instruction".Science | AAAS. 18 October 2017.Archived from the original on 2 February 2022. Retrieved20 October 2017.
  15. ^Gibney, Elizabeth (18 October 2017)."Self-taught AI is best yet at strategy game Go".Nature News.doi:10.1038/nature.2017.22858.Archived from the original on 1 May 2020. Retrieved10 May 2020.
  16. ^"The latest AI can work things out without being taught".The Economist.Archived from the original on 19 October 2017. Retrieved20 October 2017.
  17. ^abSample, Ian (18 October 2017)."'It's able to create knowledge itself': Google unveils AI that learns on its own".The Guardian.Archived from the original on 19 October 2017. Retrieved20 October 2017.
  18. ^"'It's able to create knowledge itself': Google unveils AI that learns on its own".The Guardian. 18 October 2017.Archived from the original on 19 October 2017. Retrieved26 December 2017.
  19. ^Knapton, Sarah (18 October 2017)."AlphaGo Zero: Google DeepMind supercomputer learns 3,000 years of human knowledge in 40 days".The Telegraph.Archived from the original on 15 December 2017. Retrieved26 December 2017.
  20. ^"How Google's new AI can teach itself to beat you at the most complex games".Australian Broadcasting Corporation. 19 October 2017.Archived from the original on 20 October 2017. Retrieved20 October 2017.
  21. ^"Go Players Excited About 'More Humanlike' AlphaGo Zero".Korea Bizwire. 19 October 2017.Archived from the original on 21 October 2017. Retrieved21 October 2017.
  22. ^"New version of AlphaGo can master Weiqi without human help".China News Service. 19 October 2017.Archived from the original on 19 October 2017. Retrieved21 October 2017.
  23. ^"【柯洁战败解密】AlphaGo Master最新架构和算法,谷歌云与TPU拆解" (in Chinese).Sohu. 24 May 2017.Archived from the original on 17 September 2017. Retrieved1 June 2017.
  24. ^Hardware used during training may be substantially more powerful

External links and further reading

[edit]
Computer
programs
AlphaGo
Versions
Competitions
In popular culture
Other
Machine
learning
Neural networks
Other
Generative
AI
Chatbots
Models
Other
See also
Overview
Equipment
Terms
Strategy and tactics
History
Competition
Games and matches
Art and media
Computers
Organizations
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=AlphaGo_Zero&oldid=1321659052"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp