Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Allotropy

From Wikipedia, the free encyclopedia
Property of some chemical elements to exist in two or more different forms
Not to be confused withAllotrophy.
Diamond andgraphite are two allotropes of carbon: pure forms of the same element that differ in crystalline structure.

Allotropy orallotropism (from Ancient Greek ἄλλος (allos) 'other' and τρόπος (tropos) 'manner, form') is the property of somechemical elements to exist in two or more different forms, in the same physicalstate, known asallotropes of the elements. Allotropes are different structural modifications of an element: theatoms of the element arebonded together in different manners.[1]For example, theallotropes of carbon includediamond (the carbon atoms are bonded together to form acubic lattice oftetrahedra),graphite (the carbon atoms are bonded together in sheets of ahexagonal lattice),graphene (single sheets of graphite), andfullerenes (the carbon atoms are bonded together in spherical, tubular, or ellipsoidal formations).

The termallotropy is used for elements only, not forcompounds. The more general term, used for any compound, ispolymorphism, although its use is usually restricted to solid materials such as crystals. Allotropy refers only to different forms of an element within the same physicalphase (the state of matter, i.e.plasmas,gases,liquids, orsolids). The differences between these states of matter would not alone constitute examples of allotropy. Allotropes of chemical elements are frequently referred to aspolymorphs or asphases of the element.

For some elements, allotropes have different molecular formulae or different crystalline structures, as well as a difference in physical phase; for example, twoallotropes of oxygen (dioxygen, O2, andozone, O3) can both exist in the solid, liquid and gaseous states. Other elements do not maintain distinct allotropes in different physical phases; for example,phosphorus hasnumerous solid allotropes, which all revert to the same P4 form when melted to the liquid state.

History

[edit]

The concept of allotropy was originally proposed in 1840 by the Swedish scientist BaronJöns Jakob Berzelius (1779–1848).[2][3] The term is derived from Greek άλλοτροπἱα (allotropia) 'variability, changeableness'.[4] After the acceptance ofAvogadro's hypothesis in 1860, it was understood that elements could exist as polyatomic molecules, and two allotropes of oxygen were recognized as O2 and O3.[3] In the early 20th century, it was recognized that other cases such as carbon were due to differences in crystal structure.

By 1912,Ostwald noted that the allotropy of elements is just a special case of the phenomenon ofpolymorphism known for compounds, and proposed that the terms allotrope and allotropy be abandoned and replaced by polymorph and polymorphism.[5][3] Although many other chemists have repeated this advice,IUPAC and most chemistry texts still favour the usage of allotrope and allotropy for elements only.[6]

Differences in properties of an element's allotropes

[edit]

Allotropes are different structural forms of the same element and can exhibit quite different physical properties and chemical behaviours. The change between allotropic forms is triggered by the same forces that affect other structures, i.e.,pressure,light, andtemperature. Therefore, the stability of the particular allotropes depends on particular conditions. For instance,iron changes from abody-centered cubic structure (ferrite) to aface-centered cubic structure (austenite) above 906 °C, andtin undergoes a modification known astin pest from ametallic form to asemimetallic form below 13.2 °C (55.8 °F). As an example of allotropes having different chemical behaviour, ozone (O3) is a much stronger oxidizing agent than dioxygen (O2).

List of allotropes

[edit]

Typically, elements capable of variablecoordination number and/oroxidation states tend to exhibit greater numbers of allotropic forms. Another contributing factor is the ability of an element tocatenate.

Examples of allotropes include:

Non-metals

[edit]
ElementAllotropes
Carbon
Nitrogen
Phosphorus
Oxygen
Sulfur
  • Cyclo-Pentasulfur, Cyclo-S5
  • Cyclo-Hexasulfur, Cyclo-S6
  • Cyclo-Heptasulfur, Cyclo-S7
  • Cyclo-Octasulfur, Cyclo-S8
Selenium
  • "Red selenium", cyclo-Se8
  • Gray selenium, polymeric Se
  • Black selenium, irregular polymeric rings up to 1000 atoms long
  • Monoclinic selenium, dark red transparent crystals
Spin isomers of hydrogen
  • Orthohydrogen, H2 with nuclear spins aligned parallel
  • Parahydrogen, H2 with nuclear spins aligned antiparallel

These nuclear spin isomers have sometimes been described as allotropes, notably by the committee which awarded the 1932 Nobel prize toWerner Heisenberg for quantum mechanics and singled out the "allotropic forms of hydrogen" as its most notable application.[7]

Metalloids

[edit]
ElementAllotropes
Boron
  • Amorphous boron – brown powder – B12 regular icosahedra
  • α-rhombohedral boron
  • β-rhombohedral boron
  • γ-orthorhombic boron
  • α-tetragonal boron
  • β-tetragonal boron
  • High-pressure superconducting phase
Silicon
  • Amorphous silicon
  • α-silicon, a semiconductor,diamond cubic structure
  • β-silicon - metallic, with the BCC similar tomolybdenum and beta-tin (High Pressure Phase)
  • Q-Silicon - a ferromagnetic (Similar to Q-Carbon) and highly conductive phase of silicon (similar to graphite)[8]
  • Silicene, buckled planar single layer Silicon, similar to Graphene
Germanium
  • Amorphous germanium
  • α-germanium – semimetallic element or semiconductor, with the same structure as diamond (similar chemical properties with sulfur and silicon)
  • β-germanium – metallic, with the same structure as beta-tin
  • Germanene – Buckled planar Germanium, similar to graphene
Arsenic
  • Yellow arsenic – molecular non-metallic As4, with the same structure as white phosphorus (Similar chemical properties with nitrogen and phosphorus)
  • Gray arsenic, polymeric As (metallic, though heavily anisotropic) (similar to aluminum and antimony in chemical properties)
  • Black arsenic – molecular and non-metallic, with the same structure as red phosphorus
Antimony
  • Blue-white antimony – stable form (metallic), with the same structure as gray arsenic (similar to arsenic in chemical properties)
  • Black antimony (non-metallic and amorphous, only stable as a thin layer)
Tellurium
  • Amorphous tellurium – gray-black or brown powder[9]
  • Crystalline tellurium – hexagonal crystalline structure (metalloid) (similar chemical properties with selenium)

Metals

[edit]

Among the metallic elements that occur in nature in significant quantities (56 up to U, without Tc and Pm), almost half (27) are allotropic at ambient pressure: Li, Be, Na, Ca, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb, Hf, Tl, Th, Pa and U. Somephase transitions between allotropic forms of technologically relevant metals are those of Ti at 882 °C, Fe at 912 °C and 1,394 °C, Co at 422 °C, Zr at 863 °C, Sn at 13 °C and U at 668 °C and 776 °C.

ElementPhase name(s)Space groupPearson symbolStructure typeDescription
Lithiumα-LiR3mhR9α-SmForms below 70 K.[10]
β-LiIm3mcI2WStable at room temperature and pressure.
Fm3mcF4CuForms above 7GPa
R3mhR1α-HgAn intermediate phase formed ~40GPa.[11]
I43dcI16Forms above 40GPa.[11]
oC88Forms between 60 and 70 GPa.[12]
oC40Forms between 70 and 95 GPa.[12]
oC24Forms above 95 GPa.[12]
Berylliumα-BeP63/mmchP2MgStable at room temperature and pressure.
β-BeIm3mcI2WForms above 1255 °C.
Sodiumα-NaR3mhR9α-SmForms below 20 K.
β-NaIm3mcI2WStable at room temperature and pressure.
Fm3mcF4CuForms at room temperature above 65 GPa.[13]
I43dcI16Forms at room temperature, 108GPa.[14]
PnmaoP8MnPForms at room temperature, 119GPa.[15]
tI19*A host-guest structure that forms above between 125 and 180 GPa.[12]
hP4Forms above 180 GPa.[12]
MagnesiumP63/mmchP2MgStable at room temperature and pressure.
Im3mcI2WForms above 50 GPa.[16]
Aluminiumα-AlFm3mcF4CuStable at room temperature and pressure.
β-AlP63/mmchP2MgForms above 20.5 GPa.
PotassiumIm3mcI2WStable at room temperature and pressure.
Fm3mcF4CuForms above 11.7 GPa.[12]
I4/mcmtI19*A host-guest structure that forms at about 20 GPa.[12]
P63/mmchP4NiAsForms above 25 GPa.[12]
PnmaoP8MnPForms above 58GPa.[12]
I41/amdtI4Forms above 112 GPa.[12]
CmcaoC16Formas above 112 GPa.[12]
Ironα-Fe,ferriteIm3mcI2Body-centered cubicStable at room temperature and pressure.Ferromagnetic at T<770 °C,paramagnetic from T=770–912 °C.
γ-iron,austeniteFm3mcF4Face-centered cubicStable from 912 to 1,394 °C.
δ-ironIm3mcI2Body-centered cubicStable from 1,394 – 1,538 °C, same structure as α-Fe.
ε-iron,HexaferrumP63/mmchP2Hexagonal close-packedStable at high pressures.
Cobalt[17]α-Cobalthexagonal-close packedForms below 450 °C.
β-Cobaltface centered cubicForms above 450 °C.
ε-CobaltP4132primitive cubicForms from thermal decomposition of [Co2CO8]. Nanoallotrope.
Rubidiumα-RbIm3mcI2WStable at room temperature and pressure.
cF4Forms above 7 GPa.[12]
oC52Forms above 13 GPa.[12]
tI19*Forms above 17 GPa.[12]
tI4Forms above 20 GPa.[12]
oC16Forms above 48 GPa.[12]
Tinα-tin,gray tin,tin pestFd3mcF8d-CStable below 13.2 °C.
β-tin,white tinI41/amdtI4β-SnStable at room temperature and pressure.
γ-tin, rhombic tinI4/mmmtI2InForms above 10 GPa.[18]
γ'-SnImmmoI2MoPt2Forms above 30 GPa.[18]
σ-Sn, γ"-SnIm3mcI2WForms above 41 GPa.[18] Forms at very high pressure.[19]
δ-SnP63/mmchP2MgForms above 157 GPa.[18]
Stanene
Poloniumα-Poloniumsimple cubic
β-Poloniumrhombohedral

Most stable structure under standard conditions.
Structures stable below room temperature.
Structures stable above room temperature.
Structures stable above atmospheric pressure.

Lanthanides and actinides

[edit]
Phase diagram of the actinide elements.

Nanoallotropes

[edit]

In 2017, the concept of nanoallotropy was proposed.[21] Nanoallotropes, or allotropes ofnanomaterials, are nanoporous materials that have the same chemical composition (e.g., Au), but differ in their architecture at the nanoscale (that is, on a scale 10 to 100 times the dimensions of individual atoms).[22] Such nanoallotropes may help create ultra-small electronic devices and find other industrial applications.[22] The different nanoscale architectures translate into different properties, as was demonstrated forsurface-enhanced Raman scattering performed on several different nanoallotropes of gold.[21] A two-step method for generating nanoallotropes was also created.[22]

See also

[edit]

Notes

[edit]
  1. ^IUPAC,Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "Allotrope".doi:10.1351/goldbook.A00243
  2. ^See:
    • Berzelius, Jac. (1841).Årsberättelse om Framstegen i Fysik och Kemi afgifven den 31 Mars 1840. Första delen [Annual Report on Progress in Physics and Chemistry submitted March 31, 1840. First part.] (in Swedish). Stockholm, Sweden: P.A. Norstedt & Söner. p. 14. From p. 14:"Om det ock passar väl för att uttrycka förhållandet emellan myrsyrad ethyloxid och ättiksyrad methyloxid, så är det icke passande för de olika tillstånd hos de enkla kropparne, hvari dessa blifva af skiljaktiga egenskaper, och torde för dem böra ersättas af en bättre vald benämning, t. ex.Allotropi (afαλλότροπος, som betyder: af olika beskaffenhet) ellerallotropiskt tillstånd." (If it [i.e., the wordisomer] is also well suited to express the relation between formic acid ethyl oxide [i.e., ethyl formate] and acetic acid methyloxide [i.e., methyl acetate], then it [i.e., the wordisomers] is not suitable for different conditions of simple substances, where these [substances] transform to have different properties, and [therefore the wordisomers] should be replaced, in their case, by a better chosen name; for example,Allotropy (fromαλλότροπος, which means: of different nature) orallotropic condition.)
    • Republished in German:Berzelius, Jacob; Wöhler, F. (1841)."Jahres-Bericht über die Fortschritte der physischen Wissenschaften" [Annual Report on Progress of the Physical Sciences].Jahres Bericht Über die Fortschritte der Physischen Wissenschaften (in German).20. Tübingen, (Germany): Laupp'schen Buchhandlung: 13. From p. 13:"Wenn es sich auch noch gut eignet, um das Verhältniss zwischen ameisensaurem Äthyloxyd und essigsaurem Methyloxyd auszudrücken, so ist es nicht passend für ungleiche Zustände bei Körpern, in welchen diese verschiedene Eigenschaften annehmen, und dürfte für diese durch eine besser gewählte Benennung zu ersetzen sein, z. B. durchAllotropie (vonαλλότροπος, welches bedeutet: von ungleicher Beschaffenheit), oder durchallotropischen Zustand." (Even if it [i.e., the wordisomer] is still well suited to express the relation between ethyl formate and methyl acetate, then it is not appropriate for the distinct conditions in the case of substances where these [substances] assume different properties, and for these, [the wordisomer] may be replaced with a better chosen designation, e.g., withAllotropy (fromαλλότροπος, which means: of distinct character), or withallotropic condition.)
    • Merriam-Webster online dictionary:Allotropy
  3. ^abcJensen, W. B. (2006), "The Origin of the Term Allotrope",J. Chem. Educ.,83 (6):838–39,Bibcode:2006JChEd..83..838J,doi:10.1021/ed083p838.
  4. ^"allotropy",A New English Dictionary on Historical Principles, vol. 1, Oxford University Press, 1888, p. 238.
  5. ^Ostwald, Wilhelm; Taylor, W.W. (1912).Outlines of General Chemistry (3rd ed.). London, England: Macmillan and Co., Ltd. p. 104. From p. 104: "Substances are known which exist not only in two, but even in three, four or five different solid forms; no limitation to the number is known to exist. Such substances are called polymorphous. The name allotropy is commonly employed in the same connexion, especially when the substance is an element. There is no real reason for making this distinction, and it is preferable to allow the second less common name to die out."
  6. ^Jensen 2006, citing Addison, W. E. The Allotropy of the Elements (Elsevier 1964) that many have repeated this advice.
  7. ^Werner Heisenberg – Facts Nobelprize.org
  8. ^"Meet Q-silicon, a new magnetic material for spintronic quantum computers".New Atlas. July 4, 2023.
  9. ^Raj, G.Advanced Inorganic Chemistry Vol-1. Krishna Prakashan. p. 1327.ISBN 978-81-87224-03-7. RetrievedJanuary 6, 2017.
  10. ^Overhauser, A. W. (1984-07-02). "Crystal Structure of Lithium at 4.2 K".Physical Review Letters.53 (1). American Physical Society (APS):64–65.Bibcode:1984PhRvL..53...64O.doi:10.1103/physrevlett.53.64.ISSN 0031-9007.
  11. ^abHanfland, M.; Syassen, K.; Christensen, N. E.; Novikov, D. L. (2000). "New high-pressure phases of lithium".Nature.408 (6809). Springer Science and Business Media LLC:174–178.Bibcode:2000Natur.408..174H.doi:10.1038/35041515.ISSN 0028-0836.PMID 11089965.S2CID 4303422.
  12. ^abcdefghijklmnopDegtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures".Solid State Sciences.36:62–72.arXiv:1310.4718.Bibcode:2014SSSci..36...62D.doi:10.1016/j.solidstatesciences.2014.07.008.
  13. ^Hanfland, M.; Loa, I.; Syassen, K. (2002-05-13). "Sodium under pressure: bcc to fcc structural transition and pressure-volume relation to 100 GPa".Physical Review B.65 (18) 184109. American Physical Society (APS).Bibcode:2002PhRvB..65r4109H.doi:10.1103/physrevb.65.184109.ISSN 0163-1829.
  14. ^McMahon, M. I.; Gregoryanz, E.; Lundegaard, L. F.; Loa, I.; Guillaume, C.; Nelmes, R. J.; Kleppe, A. K.; Amboage, M.; Wilhelm, H.; Jephcoat, A. P. (2007-10-18)."Structure of sodium above 100 GPa by single-crystal x-ray diffraction".Proceedings of the National Academy of Sciences.104 (44):17297–17299.Bibcode:2007PNAS..10417297M.doi:10.1073/pnas.0709309104.ISSN 0027-8424.PMC 2077250.PMID 17947379.
  15. ^Gregoryanz, E.; Lundegaard, L. F.; McMahon, M. I.; Guillaume, C.; Nelmes, R. J.; Mezouar, M. (2008-05-23). "Structural Diversity of Sodium".Science.320 (5879). American Association for the Advancement of Science (AAAS):1054–1057.Bibcode:2008Sci...320.1054G.doi:10.1126/science.1155715.ISSN 0036-8075.PMID 18497293.S2CID 29596632.
  16. ^Olijnyk, H.; Holzapfel, W. B. (1985-04-01). "High-pressure structural phase transition in Mg".Physical Review B.31 (7). American Physical Society (APS):4682–4683.Bibcode:1985PhRvB..31.4682O.doi:10.1103/physrevb.31.4682.ISSN 0163-1829.PMID 9936412.
  17. ^de la Peña O'Shea, Víctor Antonio; Moreira, Iberio de P. R.; Roldán, Alberto; Illas, Francesc (8 July 2010). "Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations".The Journal of Chemical Physics.133 (2): 024701.doi:10.1063/1.3458691.PMID 20632764.
  18. ^abcdDeffrennes, Guillaume; Faure, Philippe; Bottin, François; Joubert, Jean-Marc; Oudot, Benoit (2022). "Tin (Sn) at high pressure: Review, X-ray diffraction, DFT calculations, and Gibbs energy modeling".Journal of Alloys and Compounds.919 165675.arXiv:2203.16240.doi:10.1016/j.jallcom.2022.165675.
  19. ^Molodets, A. M.; Nabatov, S. S. (2000). "Thermodynamic Potentials, Diagram of State, and Phase Transitions of Tin on Shock Compression".High Temperature.38 (5):715–721.Bibcode:2000HTemp..38..715M.doi:10.1007/BF02755923.S2CID 120417927.
  20. ^Benedict, U.; Haire, R. G.; Peterson, J. R.; Itie, J. P. (1985). "Delocalisation of 5f electrons in curium metal under high pressure".Journal of Physics F: Metal Physics.15 (2):L29–L35.Bibcode:1985JPhF...15L..29B.doi:10.1088/0305-4608/15/2/002.
  21. ^abUdayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit;Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr (2017-10-27)."Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices".Science.358 (6362):514–518.Bibcode:2017Sci...358..514U.doi:10.1126/science.aan6046.hdl:10067/1472420151162165141.ISSN 0036-8075.PMID 29074773.
  22. ^abc"Materials That Don't Exist in Nature Might Lead to New Fabrication Techniques".israelbds.org. Archived fromthe original on 2017-12-09. Retrieved2017-12-08.

References

[edit]

External links

[edit]
Wikimedia Commons has media related toAllotropy.
International
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Allotropy&oldid=1334433264"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp