Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Abstract object theory

From Wikipedia, the free encyclopedia
Branch of metaphysics regarding abstract objects

For the general concept of objecthood in philosophy, seeObject (philosophy).

Abstract object theory (AOT) is a branch ofmetaphysics regardingabstract objects.[1] Originally devised by metaphysicianEdward Zalta in 1981,[2] the theory was an expansion ofmathematical Platonism.

Overview

[edit]
See also:Dual copula strategy

Abstract Objects: An Introduction to Axiomatic Metaphysics (1983) is the title of a publication by Edward Zalta that outlines abstract object theory.

AOT is adual predication approach (also known as "dual copula strategy") to abstract objects[3] influenced by the contributions ofAlexius Meinong[4][5] and his studentErnst Mally.[6][5] On Zalta's account, there are two modes ofpredication: some objects (the ordinaryconcrete ones around us, like tables and chairs)exemplify properties, while others (abstract objects like numbers, and what others would call "nonexistent objects", like theround square and the mountain made entirely of gold) merelyencode them.[7] While the objects that exemplify properties are discovered through traditional empirical means, a simple set of axioms allows us to know about objects that encode properties.[8] For every set of properties, there is exactly one object that encodes exactly that set of properties and no others.[9] This allows for aformalizedontology.

A notable feature of AOT is that several notable paradoxes in naive predication theory (namelyRomane Clark's paradox undermining the earliest version ofHéctor-Neri Castañeda'sguise theory,[10][11][12] Alan McMichael's paradox,[13] and Daniel Kirchner's paradox)[14] do not arise within it.[15] AOT employsrestrictedabstractionschemata to avoid such paradoxes.[16]

In 2007, Zalta andBranden Fitelson introduced the termcomputational metaphysics to describe the implementation and investigation of formal,axiomatic metaphysics in anautomated reasoning environment.[17][18]

See also

[edit]

Notes

[edit]
  1. ^Zalta, Edward N. (2004)."The Theory of Abstract Objects". The Metaphysics Research Lab, Center for the Study of Language and Information, Stanford University. RetrievedJuly 18, 2020.
  2. ^Zalta, Edward N. (1981).An Introduction to a Theory of Abstract Objects (Thesis).UMass Amherst.doi:10.7275/f32y-fm90.hdl:20.500.14394/12282.
  3. ^Dale Jacquette,Meinongian Logic: The Semantics of Existence and Nonexistence, Walter de Gruyter, 1996, p. 17.
  4. ^Alexius Meinong, "Über Gegenstandstheorie" ("The Theory of Objects"), in Alexius Meinong, ed. (1904).Untersuchungen zur Gegenstandstheorie und Psychologie (Investigations in Theory of Objects and Psychology), Leipzig: Barth, pp. 1–51.
  5. ^abZalta 1983, p. xi.
  6. ^Mally, Ernst (1912).Gegenstandstheoretische Grundlagen der Logik und Logistik [Object-theoretic Foundations for Logics and Logistics](PDF) (in German). Leipzig: Barth. §§33 and 39.
  7. ^Zalta 1983, p. 33.
  8. ^Zalta 1983, p. 36.
  9. ^Zalta 1983, p. 35.
  10. ^Clark, Romane (1978). "Not Every Object of Thought Has Being: A Paradox in Naive Predication Theory".Noûs.12 (2):181–188.JSTOR 2214691.
  11. ^Rapaport, William J. (1978). "Meinongian Theories and a Russellian Paradox".Noûs.12 (2):153–180.
  12. ^*Palma, Adriano, ed. (2014).Castañeda and his guises: Essays on the work of Hector-Neri Castañeda. Philosophische Analyse / Philosophical Analysis (in Breton). Boston/Berlin: De Gruyter. pp. 67–82, esp. 72.ISBN 978-1-61451-663-7.
  13. ^McMichael, Alan; Zalta, Edward N. (1980). "An alternative theory of nonexistent objects".Journal of Philosophical Logic.9 (3):297–313, esp. p. 313 n. 15.doi:10.1007/BF00248396.ISSN 0022-3611.
  14. ^Daniel Kirchner,"Representation and Partial Automation of the Principia Logico-Metaphysica in Isabelle/HOL", Archive of Formal Proofs, 2017.
  15. ^Zalta 2025, p. 258: "Some non-core λ-expressions, such as those leading to the Clark/Boolos, McMichael/Boolos, and Kirchner paradoxes, will be provably empty."
  16. ^Zalta 1983, p. 158.
  17. ^Fitelson, Branden; Zalta, Edward N. (March 14, 2007)."Steps toward a computational metaphysics"(PDF).Journal of Philosophical Logic.36 (2):227–247.doi:10.1007/s10992-006-9038-7.ISSN 0022-3611.
  18. ^Jesse Alama, Paul E. Oppenheimer,Edward N. Zalta,"Automating Leibniz's Theory of Concepts", in A. Felty and A. Middeldorp (eds.),Automated Deduction – CADE 25: Proceedings of the 25th International Conference on Automated Deduction (Lecture Notes in Artificial Intelligence: Volume 9195), Berlin: Springer, 2015, pp. 73–97.

References

[edit]

Further reading

[edit]

External links

[edit]
  • José L. Falguera and Concha Martínez-Vidal; based on earlier work by Gideon Rosen (August 21, 2025)."Abstract Objects".Stanford Encyclopedia of Philosophy. RetrievedAugust 23, 2025.{{cite web}}: CS1 maint: multiple names: authors list (link)
Theories
Concepts
Metaphysicians
Notable works
Related topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Abstract_object_theory&oldid=1307323128"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp