Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

84 (number)

From Wikipedia, the free encyclopedia
Natural number
← 8384 85 →
Cardinaleighty-four
Ordinal84th
(eighty-fourth)
Factorization22 × 3 × 7
Divisors1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84 (12)
Greek numeralΠΔ´
Roman numeralLXXXIV,lxxxiv
Binary10101002
Ternary100103
Senary2206
Octal1248
Duodecimal7012
Hexadecimal5416

84 (eighty-four) is thenatural number following83 and preceding85. It is sevendozens.

In mathematics

[edit]
Ahepteract is a seven-dimensionalhypercube with 84penteract 5-faces.

84 is asemiperfect number,[1] being thrice a perfect number, and the sum of the sixth pair oftwin primes(41+43){\displaystyle (41+43)}.[2] It is the number of four-digitperfect powers indecimal.[3]

It is the third (or the 2)dodecahedral number,[4] and the sum of the first seventriangular numbers (1, 3, 6, 10, 15, 21, 28), which makes it the seventhtetrahedral number.[5]

The number ofdivisors of 84 is 12.[6] As no smaller number has more than 12 divisors, 84 is alargely composite number.[7]

The twenty-secondunique prime indecimal, with notably differentdigits than its preceding (and known following) terms in the samesequence, contains a total of 84 digits.[8]

Ahepteract is a seven-dimensionalhypercube with 84penteract 5-faces.[9]

84 is thelimit superior of the largest finite subgroup of themapping class group of agenusg{\displaystyle g} surface divided byg{\displaystyle g}.[citation needed]

UnderHurwitz's automorphisms theorem, a smooth connectedRiemann surfaceX{\displaystyle X} ofgenusg>1{\displaystyle g>1} will contain anautomorphism groupAut(X)=G{\displaystyle \mathrm {Aut} (X)=G} whoseorder is classically bound to|G|84 (g1){\displaystyle |G|\leq 84{\text{ }}(g-1)}.[10]

84 is the thirtieth and largestn{\displaystyle n} for which thecyclotomic fieldQ(ζn){\displaystyle \mathrm {Q} (\zeta _{n})} has class number1{\displaystyle 1} (or uniquefactorization), preceding60 (that is thecomposite index of 84),[11] and48.[12][13]

There are 84zero divisors in the 16-dimensionalsedenionsS{\displaystyle \mathbb {S} }.[14]

In other fields

[edit]

84 is also:

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A005835 (Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Sloane, N. J. A. (ed.)."Sequence A077800 (List of twin primes {p, p+2})".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-06-08.
  3. ^Sloane, N. J. A. (ed.)."Sequence A075308 (Number of n-digit perfect powers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^Sloane, N. J. A. (ed.)."Sequence A006566 (Dodecahedral numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^Sloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^Sloane, N. J. A. (ed.)."Sequence A000005 (d(n) (also called tau(n) or sigma_0(n)), the number of divisors of n.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^Sloane, N. J. A. (ed.)."Sequence A067128 (Ramanujan's largely composite numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^Sloane, N. J. A. (ed.)."Sequence A040017 (Prime 3 followed by unique period primes (the period r of 1/p is not shared with any other prime))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-06-08.
  9. ^Sloane, N. J. A. (ed.)."Sequence A046092 (4 times triangular numbers: a(n) = 2*n*(n+1))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^Giulietti, Massimo; Korchmaros, Gabor (2019)."Algebraic curves with many automorphisms".Advances in Mathematics.349 (9). Amsterdam, NL:Elsevier:162–211.arXiv:1702.08812.doi:10.1016/J.AIM.2019.04.003.MR 3938850.S2CID 119269948.Zbl 1419.14040.
  11. ^Sloane, N. J. A. (ed.)."Sequence A002808 (The composite numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^Washington, Lawrence C. (1997).Introduction to Cyclotomic Fields. Graduate Texts in Mathematics. Vol. 83 (2nd ed.).Springer-Verlag. pp. 205–206 (Theorem 11.1).ISBN 0-387-94762-0.MR 1421575.OCLC 34514301.Zbl 0966.11047.
  13. ^Sloane, N. J. A. (ed.)."Sequence A005848 (Cyclotomic fields with class number 1 (or with unique factorization))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^Cawagas, Raoul E. (2004)."On the Structure and Zero Divisors of the Cayley-Dickson Sedenion Algebra".Discussiones Mathematicae – General Algebra and Applications.24 (2). PL:University of Zielona Góra:262–264.doi:10.7151/DMGAA.1088.MR 2151717.S2CID 14752211.Zbl 1102.17001.
  15. ^Venerabilis, Beda (May 13, 2020) [731 AD]."Historia Ecclesiastica gentis Anglorum/Liber Secundus" [The Ecclesiastical History of the English Nation/Second Book].Wikisource (in Latin). RetrievedSeptember 29, 2022.
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s
Retrieved from "https://en.wikipedia.org/w/index.php?title=84_(number)&oldid=1337296629"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp