Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

71 (number)

From Wikipedia, the free encyclopedia
Natural number
← 7071 72 →
Cardinalseventy-one
Ordinal71st
(seventy-first)
Factorizationprime
Prime20th
Divisors1, 71
Greek numeralΟΑ´
Roman numeralLXXI,lxxi
Binary10001112
Ternary21223
Senary1556
Octal1078
Duodecimal5B12
Hexadecimal4716

71 (seventy-one) is thenatural number following70 and preceding72.

Look upseventy-one in Wiktionary, the free dictionary.

In mathematics

[edit]

71 is the 20th prime number. Because both rearrangements of its digits (17 and 71) areprime numbers, 71 is anemirp and more generally apermutable prime.[1][2]

71 is acentered heptagonal number.[3]

It is aregular prime,[4] aRamanujan prime,[5] aHiggs prime,[6] and agood prime.[7]

It is aPillai prime, since9!+1{\displaystyle 9!+1} is divisible by 71, but 71 is not one more than a multiple of 9.[8]It is part of the last known pair (71, 7) ofBrown numbers, since712=7!+1{\displaystyle 71^{2}=7!+1}.[9]

71 is the smallest of thirty-one discriminants of imaginaryquadratic fields with class number of 7, negated (see alsoHeegner numbers).[10]

71 is the largest number which occurs as a prime factor of an order of asporadic simple group, the largest (15th)supersingular prime.[11][12]

See also

[edit]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A006567 (Emirps (primes whose reversal is a different prime))".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Baker, Alan (January 2017). "Mathematical spandrels".Australasian Journal of Philosophy.95 (4):779–793.doi:10.1080/00048402.2016.1262881.S2CID 218623812.
  3. ^Sloane, N. J. A. (ed.)."Sequence A069099 (Centered heptagonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^"Sloane's A007703 : Regular primes".The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^"Sloane's A104272 : a(n) is the smallest number such that if x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x".The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  6. ^"Sloane's A007459 : a(n+1) = smallest prime > a(n) such that a(n+1)-1 divides the product (a(1)...a(n))^2".The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^"Sloane's A028388 : prime(n) such that prime(n)^2 > prime(n-i)*prime(n+i) for all 1 <= i <= n-1".The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^Sloane, N. J. A. (ed.)."Sequence A063980 (Pillai primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  9. ^Berndt, Bruce C.; Galway, William F. (2000). "On the Brocard–Ramanujan Diophantine equationn!+1=m2{\displaystyle n!+1=m^{2}}".Ramanujan Journal.4 (1):41–42.doi:10.1023/A:1009873805276.MR 1754629.S2CID 119711158.
  10. ^Sloane, N. J. A. (ed.)."Sequence A046004 (Discriminants of imaginary quadratic fields with class number 7 (negated).)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2024-08-03.
  11. ^Sloane, N. J. A. (ed.)."Sequence A002267 (The 15 supersingular primes)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^Duncan, John F. R.;Ono, Ken (2016)."The Jack Daniels problem".Journal of Number Theory.161:230–239.arXiv:1411.5354.doi:10.1016/j.jnt.2015.06.001.MR 3435726.S2CID 117748466.
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s
Retrieved from "https://en.wikipedia.org/w/index.php?title=71_(number)&oldid=1312037147"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp