Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

6-simplex

From Wikipedia, the free encyclopedia
Uniform 6-polytope
6-simplex
Typeuniform polypeton
Schläfli symbol{35}
Coxeter diagrams
Elements

f5 = 7,f4 = 21,C = 35,F = 35,E = 21,V = 7
(χ=0)

Coxeter groupA6, [35], order 5040
Bowers name
and (acronym)
Heptapeton
(hop)
Vertex figure5-simplex
Circumradius37{\displaystyle {\sqrt {\tfrac {3}{7}}}}
0.654654[1]
Propertiesconvex,isogonalself-dual

Ingeometry, a 6-simplex is aself-dualregular6-polytope. It has 7vertices, 21edges, 35 trianglefaces, 35tetrahedralcells, 215-cell 4-faces, and 75-simplex 5-faces. Itsdihedral angle is cos−1(1/6), or approximately 80.41°.

Alternate names

[edit]

It can also be called aheptapeton, orhepta-6-tope, as a 7-facetted polytope in 6-dimensions. Thenameheptapeton is derived fromhepta for sevenfacets inGreek and-peta for having five-dimensional facets, and-on. Jonathan Bowers gives a heptapeton the acronymhop.[2]

As a configuration

[edit]

Thisconfiguration matrix represents the 6-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation.[3][4]

[76152015622151010533354644643533510105212615201567]{\displaystyle {\begin{bmatrix}{\begin{matrix}7&6&15&20&15&6\\2&21&5&10&10&5\\3&3&35&4&6&4\\4&6&4&35&3&3\\5&10&10&5&21&2\\6&15&20&15&6&7\end{matrix}}\end{bmatrix}}}

Coordinates

[edit]

TheCartesian coordinates for an origin-centered regular heptapeton having edge length 2 are:

(1/21, 1/15, 1/10, 1/6, 1/3, ±1){\displaystyle \left({\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}
(1/21, 1/15, 1/10, 1/6, 21/3, 0){\displaystyle \left({\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}
(1/21, 1/15, 1/10, 3/2, 0, 0){\displaystyle \left({\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}
(1/21, 1/15, 22/5, 0, 0, 0){\displaystyle \left({\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}
(1/21, 5/3, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}
(12/7, 0, 0, 0, 0, 0){\displaystyle \left(-{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}

The vertices of the6-simplex can be more simply positioned in 7-space as permutations of:

(0,0,0,0,0,0,1)

This construction is based onfacets of the7-orthoplex.

Images

[edit]
orthographic projections
AkCoxeter planeA6A5A4
Graph
Dihedral symmetry[7][6][5]
Ak Coxeter planeA3A2
Graph
Dihedral symmetry[4][3]

Related uniform 6-polytopes

[edit]

The regular 6-simplex is one of 35uniform 6-polytopes based on the [3,3,3,3,3]Coxeter group, all shown here in A6Coxeter planeorthographic projections.

A6 polytopes

t0

t1

t2

t0,1

t0,2

t1,2

t0,3

t1,3

t2,3

t0,4

t1,4

t0,5

t0,1,2

t0,1,3

t0,2,3

t1,2,3

t0,1,4

t0,2,4

t1,2,4

t0,3,4

t0,1,5

t0,2,5

t0,1,2,3

t0,1,2,4

t0,1,3,4

t0,2,3,4

t1,2,3,4

t0,1,2,5

t0,1,3,5

t0,2,3,5

t0,1,4,5

t0,1,2,3,4

t0,1,2,3,5

t0,1,2,4,5

t0,1,2,3,4,5

Notes

[edit]
  1. ^Klitzing, Richard."heptapeton". bendwavy.org.
  2. ^Klitzing, Richard."6D uniform polytopes (polypeta) x3o3o3o3o3o — hop".
  3. ^Coxeter 1973, §1.8 Configurations
  4. ^Coxeter, H.S.M. (1991).Regular Complex Polytopes (2nd ed.). Cambridge University Press. p. 117.ISBN 9780521394901.

References

[edit]

External links

[edit]
Fundamental convexregular anduniform polytopes in dimensions 2–10
FamilyAnBnI2(p) /DnE6 /E7 /E8 /F4 /G2Hn
Regular polygonTriangleSquarep-gonHexagonPentagon
Uniform polyhedronTetrahedronOctahedronCubeDemicubeDodecahedronIcosahedron
Uniform polychoronPentachoron16-cellTesseractDemitesseract24-cell120-cell600-cell
Uniform 5-polytope5-simplex5-orthoplex5-cube5-demicube
Uniform 6-polytope6-simplex6-orthoplex6-cube6-demicube122221
Uniform 7-polytope7-simplex7-orthoplex7-cube7-demicube132231321
Uniform 8-polytope8-simplex8-orthoplex8-cube8-demicube142241421
Uniform 9-polytope9-simplex9-orthoplex9-cube9-demicube
Uniform 10-polytope10-simplex10-orthoplex10-cube10-demicube
Uniformn-polytopen-simplexn-orthoplexn-cuben-demicube1k22k1k21n-pentagonal polytope
Topics:Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations
Retrieved from "https://en.wikipedia.org/w/index.php?title=6-simplex&oldid=1292441520"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp