Natural number
Cardinal three hundred sixty Ordinal 360th (three hundred sixtieth) Factorization 23 × 32 × 5 Divisors 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360 Greek numeral ΤΞ´ Roman numeral CCCLX ,ccclx Binary 1011010002 Ternary 1111003 Senary 14006 Octal 5508 Duodecimal 26012 Hexadecimal 16816
The surface of thecompound of five cubes consists of 360 triangles. 360 (three hundred [and] sixty ) is thenatural number following359 and preceding361 .
360 is divisible by the number of its divisors (24 ), and it is the smallest number divisible by every natural number from 1 to 10, except7 . Furthermore, one of the divisors of 360 is72 , which is the number ofprimes below it. 360 is a triangular matchstick number.[ 4] Aturn is divided into 360degrees forangular measurement .360° = 2π rad is also called around angle . This unit choice divides round angles into equalsectors measured in integer rather than fractional degrees. Many angles commonly appearing inplanimetrics have an integer number of degrees. For asimple non-intersectingpolygon , the sum of theinternal angles of aquadrilateral always equals 360 degrees.
Integers from 361 to 369 [ edit ] 361 = 19 2 , {\displaystyle 361=19^{2},} centered triangular number,[ 6] centered octagonal number ,centered decagonal number ,[ 7] member of theMian–Chowla sequence .[ 8] There are also 361 positions on a standard 19 × 19Go board.
362 = 2 × 181 = σ 2 ( 19 ) {\displaystyle 362=2\times 181=\sigma _{2}(19)} : sum of squares of divisors of 19,[ 9] Mertens function returns 0,[ 10] nontotient, noncototient.[ 11]
364 = 2 2 × 7 × 13 {\displaystyle 364=2^{2}\times 7\times 13} ,tetrahedral number ,[ 12] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[ 10] nontotient .
It is arepdigit inbases three (111111),nine (444), twenty-five (EE), twenty-seven (DD), fifty-one (77), and ninety (44); the sum of six consecutive powers of three (1 + 3 + 9 + 27 + 81 + 243); and the twelfth non-zerotetrahedral number .[ 13]
365 is the amount of days in a common year. For the common year, seecommon year .
366 = 2 × 3 × 61 , {\displaystyle 366=2\times 3\times 61,} sphenic number ,[ 14] Mertens function returns 0,[ 10] noncototient,[ 11] number of complete partitions of 20,[ 15] 26-gonal and 123-gonal. There are also 366 days in aleap year .
367 is a prime number,Perrin number ,[ 16] happy number ,prime index prime and a strictly non-palindromic number.
368 = 2 4 × 23. {\displaystyle 368=2^{4}\times 23.} It is also aLeyland number .[ 17]
^ Sloane, N. J. A. (ed.)."Sequence A002182 (Highly composite numbers, definition (1): numbers n where d(n), the number of divisors of n (A000005), increases to a record.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2016-05-31 .^ "A002201 - OEIS" .oeis.org . Retrieved2024-11-28 .^ "A004490 - OEIS" .oeis.org . Retrieved2024-11-28 .^ Sloane, N. J. A. (ed.)."Sequence A045943 (Triangular matchstick numbers: a(n) is 3*n*(n+1)/2)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A002827 (Unitary perfect numbers: numbers k such that usigma(k) - k equals k.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-11-02 .^ "Centered Triangular Number" .mathworld.wolfram.com .^ Sloane, N. J. A. (ed.)."Sequence A062786 (Centered 10-gonal numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2016-05-22 .^ Sloane, N. J. A. (ed.)."Sequence A005282 (Mian-Chowla sequence)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2016-05-22 .^ Sloane, N. J. A. (ed.)."Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b c Sloane, N. J. A. (ed.)."Sequence A028442 (Numbers k such that Mertens's function M(k) (A002321) is zero)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^a b "Noncototient" .mathworld.wolfram.com .^ Sloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2016-05-22 .^ Sloane, N. J. A. (ed.)."Sequence A000292 (Tetrahedral (or triangular pyramidal) numbers)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ "Sphenic number" .mathworld.wolfram.com .^ Sloane, N. J. A. (ed.)."Sequence A126796 (Number of complete partitions of n)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ "Parrin number" .mathworld.wolfram.com .^ Sloane, N. J. A. (ed.)."Sequence A076980" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.Wells, D. (1987).The Penguin Dictionary of Curious and Interesting Numbers (p. 152). London: Penguin Group.
400 to 999
400s, 500s, and 600s 700s, 800s, and 900s
1000s and 10,000s
1000s 10,000s
100,000s to 10,000,000,000,000s
100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 10,000,000,000 100,000,000,000 1,000,000,000,000 10,000,000,000,000