Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2MASS J10475385+2124234

Coordinates:Sky map10h 47m 53.85s, +21° 24′ 29.8″
From Wikipedia, the free encyclopedia
Brown dwarf star in the constellation Leo
2MASS J10475385+2124234
Observation data
Epoch J2000      Equinox J2000
ConstellationLeo
Right ascension10h 47m 53.85456s[1]
Declination21° 24′ 23.4684″[1]
Characteristics
Spectral typeT6.5
Apparent magnitude (J)15.819 ± 0.059[1]
Apparent magnitude (H)15.797 ± 0.120[1]
Apparent magnitude (K)16.20 ± 0.03[1]
Astrometry
Proper motion (μ)RA: −1714mas/yr[2]
Dec.: −489mas/yr[2]
Parallax (π)94.73±3.81 mas[3]
Distance34 ± 1 ly
(10.6 ± 0.4 pc)
Details
Mass42±26[4] MJup
Radius0.94 ± 0.16[4] RJup
Luminosity4.35×10−6[5] L
Surface gravity (log g)4.96 ± 0.49[4] cgs
Temperature880 ± 76[6] K
Rotation1.77 ± 0.04h[6]
Other designations
2MASSW J1047539+212423[1]
2MASSI J1047539+212423[1]
2MASSI J1047538+212423[1]
WISEA J104752.35+212417.2[1]
Database references
SIMBADdata

2MASS J10475385+2124234 (abbreviated to2MASS J1047+21) is abrown dwarf ofspectral class T6.5, in theconstellationLeo. This object lies at a distance of 34light-years fromEarth. It first attracted attention by becoming the first brown dwarf ofspectral class T from which radio waves were detected. This discovery then permitted its wind speeds to be computed.

Discovery

[edit]

2MASS J1047+21 was discovered in 1999 along with eight other brown dwarf candidates during theTwo Micron All-Sky Survey (2MASS), conducted from 1997 to 2001. Follow-up observations with theKeck I 10-meter telescope'sNear Infrared Camera (NIRC) were conducted on 27 May 1999 and identifiedmethane in 2MASS J1047+21's near-infrared spectrum, classifying it as aT-type brown dwarf.[7]

Detection of radio emissions

[edit]

In 2010, astronomers using theArecibo radio telescope discovered bursts of low-frequency radio waves coming from 2MASS J1047+21. This radio emission comes from electrons spiraling around the magnetic field lines of the brown dwarf.[8][9] Since the frequency of the radio emission is linked to the strength of the magnetic field, the team measured a magnetic field strength of 1.7 kG. The bursts were also found to drift in frequency, in a manner reminiscent of certain types ofsolar radio emission. The radio emissions, together with the detection of, which is usually found in stellarchromospheres, shows that 2MASS J1047+21 is magnetically active.

Measurement of wind speed

[edit]

The wind speed is directly inferred from minute, regular cycles in its visible (which matches its ultra-violet) appearance compared to the same at radio wave spectra.[10][11][12][13] The radio emissions are coming from electrons interacting with the magnetic field, which is rooted deep in the interior.[12] The visible and infrared (IR) data, on the other hand, reveal what's happening in the gas giant's cloud tops.[12]

Characteristics

[edit]
Artist's impression of a brown dwarf and its magnetic field

Radio emissions imply a magnetic field strength greater than 1.7 kG, or approximately 3000 times stronger than the Earth's magnetic field.[9]

Wind speeds

[edit]
Artist's concept of the interior structure of a brown dwarf. The magnetic field rotates at a different rate than the top of the atmosphere.

Wind speeds on 2MASS J1047+21 were measured to be 650 ± 310 metres per second (1,450 ± 690 mph) by theSpitzer Space Telescope.[6][14][15]

See also

[edit]

other T-dwarfs with radio emission:

References

[edit]
  1. ^abcdefghi"2MASSW J1047539+212423 -- Brown Dwarf (M<0.08solMass)".SIMBAD.Centre de données astronomiques de Strasbourg. Retrieved23 May 2020.
  2. ^Faherty, Jacqueline K.; Burgasser, Adam J.; Cruz, Kelle L.; Shara, Michael M.; Walter, Frederick M.; Gelino, Christopher R. (1 January 2009). "THE BROWN DWARF KINEMATICS PROJECT I. PROPER MOTIONS AND TANGENTIAL VELOCITIES FOR A LARGE SAMPLE OF LATE-TYPE M, L, AND T DWARFS".The Astronomical Journal.137 (1):1–18.arXiv:0809.3008.doi:10.1088/0004-6256/137/1/1.
  3. ^Faherty, Jacqueline K.; Burgasser, Adam J.; Walter, Frederick M.; Van der Bliek, Nicole; Shara, Michael M.; Cruz, Kelle L.; West, Andrew A.; Vrba, Frederick J.; Anglada-Escudé, Guillem (10 June 2012). "THE BROWN DWARF KINEMATICS PROJECT (BDKP). III. PARALLAXES FOR 70 ULTRACOOL DWARFS".The Astrophysical Journal.752 (1): 56.arXiv:1203.5543.doi:10.1088/0004-637X/752/1/56.
  4. ^abcFilippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L. (September 2015). "Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime".The Astrophysical Journal.810 (2): 46.arXiv:1508.01767.Bibcode:2015ApJ...810..158F.doi:10.1088/0004-637X/810/2/158.S2CID 89611607. 158.
  5. ^Williams, Peter K. G.; Berger, Edo; Zauderer, B. Ashley (April 2013). "Quasi-quiescent Radio Emission from the First Radio-emitting T Dwarf".The Astrophysical Journal Letters.767 (2): 6.arXiv:1301.2321.Bibcode:2013ApJ...767L..30W.doi:10.1088/2041-8205/767/2/L30.S2CID 119117469. L30.
  6. ^abcAllers, Katelyn N.; Vos, Johanna M.; Biller, Beth A.; Williams, Peter K. G. (10 April 2020)."A measurement of the wind speed on a brown dwarf"(PDF).Science.368 (6487):169–172.Bibcode:2020Sci...368..169A.doi:10.1126/science.aaz2856.hdl:20.500.11820/06e2e379-467a-456f-956c-b37912b8d95a.PMID 32273464.S2CID 215551310.
  7. ^Burgasser, Adam J.; Kirkpatrick, J. Davy; Brown, Michael E.; Reid, I. Neill; Gizis, John E.; Dahn, Conard C.; et al. (September 1999). "Discovery of Four Field Methane (T-Type) Dwarfs with the Two Micron All-Sky Survey".The Astrophysical Journal.522 (1):L65 –L68.arXiv:astro-ph/9907019.Bibcode:1999ApJ...522L..65B.doi:10.1086/312221.S2CID 15326092.
  8. ^Phys.org."Record-breaking radio waves discovered from ultra-cool star" (Press release).
  9. ^abRoute, M.; Wolszczan, A. (10 March 2012). "The Arecibo Detection of the Coolest Radio-flaring Brown Dwarf".The Astrophysical Journal Letters.747 (2): L22.arXiv:1202.1287.Bibcode:2012ApJ...747L..22R.doi:10.1088/2041-8205/747/2/L22.S2CID 119290950.
  10. ^Finley, Dave (9 April 2020)."Astronomers Measure Wind Speed on a Brown Dwarf". National Radio Astronomy Observatory. Retrieved23 May 2020.
  11. ^Cofield, Calla (9 April 2020)."In a First, NASA Measures Wind Speed on a Brown Dwarf".Jet Propulsion Laboratory. NASA. Retrieved23 May 2020.
  12. ^abcWall, Mike (9 April 2020)."How the brown dwarf blows: Wind speed of a 'failed star' measured for 1st time".Space.com. Retrieved23 May 2020.
  13. ^Anderson, Paul Scott (15 April 2020)."First-ever measure of brown dwarf wind speed".EarthSky. Retrieved23 May 2020.
  14. ^Allers, Katelyn; Vos, Johanna; Biller, Beth; Williams, Peter; Berger, Edo (August 2016)."Wind speeds on extrasolar worlds".Spitzer Proposal. Infrared Science Archive: 13031.Bibcode:2016sptz.prop13031A.
  15. ^Allers, Katelyn; Vos, Johanna; Biller, Beth; Williams, Peter (October 2017)."Measuring the wind speed on a radio-emitting brown dwarf".Spitzer Proposal. Infrared Science Archive: 13231.Bibcode:2017sptz.prop13231A.

External links

[edit]
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Galaxies
Messier
NGC
Numbered
Other
Galaxy clusters
Astronomical events
2020 in space
Space probe
launches
Space probes launched in 2020


Impact events
Selected
NEOs
ExoplanetsExoplanets discovered in 2020
Discoveries
CometsComets in 2020
Space
exploration
Retrieved from "https://en.wikipedia.org/w/index.php?title=2MASS_J10475385%2B2124234&oldid=1310198775"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp