Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

2MASS J04442713+2512164

From Wikipedia, the free encyclopedia
Young brown dwarf with a protoplanetary disk
2M0444

2M0444 is the bright red "star" in the center of thisPanSTARRS image.
Observation data
Epoch J2000      Equinox J2000
ConstellationTaurus[1]
Right ascension04h 44m 27.143s[2]
Declination+25° 12′ 16.44″[2]
Apparent magnitude (V)17.65±0.38[3]
Characteristics
Evolutionary stagebrown dwarf[4]
Spectral typeM7.25e±0.25[5]
Astrometry
Proper motion (μ)RA: +5.760±0.067mas/yr[2]
Dec.: −19.848±0.045mas/yr[2]
Parallax (π)6.9855±0.0603 mas[2]
Distance467 ± 4 ly
(143 ± 1 pc)
Details
Mass0.045[6]M,
0.043–0.092[4] M
Mass47[6]MJ,
45–96[4] MJup
Luminosity (bolometric)0.028[5] L
Temperature2838[5] K
Rotation4.4300 days[7]
Rotational velocity (v sin i)12±2[6] km/s
Age1[8] Myr
Other designations
IRAS 04414+2506, IRAS S04414+2506, 2MASS J04442713+2512164,EPIC 247915927, SSTtau 044427.1+251216,TIC 125977598,UGCS J044427.14+251216.3,WISE J044427.14+251216.3,Gaia DR2 147441558642852736
Database references
SIMBADdata

2MASS J04442713+2512164 (2M0444, IRAS 04414+2506) is abrown dwarf in theTaurus Molecular Cloud. It is surrounded by aprotoplanetary disk, which is resolved by multiple observatories. It is one of the brightest brown dwarf disks in millimeterwavelengths.[8][9][4]

IRAS 04414+2506 was first identified as a goodpre-main sequence star withIRAS in 1994, resembling a class II disk.[10][11] In 2004 it was identified as the2MASS source J04442713+2512164 and identified as a brown dwarf as part of the Taurus Cloud for the first time byKevin Luhman.[5]

The brown dwarf

[edit]

The brown dwarf was identified as having a spectral type of M7.25 with theMMT Observatory and the spectrum showedemission lines ofH-alpha,oxygen andsulfur. The oxygen and sulfur emission lines are associated with class I objects,Herbig-Haro objects and someT Tauri stars.[5] A detailed first study was published in 2008. This work identified additional emission lines with spectra from theKeck Observatory andCalar Alto Observatory. These are emissions bycalcium andnitrogen. The H-alpha line has a broad and asymmetric profile, indicating that gas moves with different velocities around the brown dwarf. The emission lines show that the brown dwarf isaccreting material intensely, powering an outflow andastrophysical jet. The mass of the brown dwarf was estimated to be 0.045 M (47 MJ) for an age of 5 million years.[6] The mass of the brown dwarf was directly measured using therotation of the gas disk. A mass of 0.043–0.092 M (45–96 MJ) was measured.[4]

The protoplanetary disk

[edit]
Resolved image of the disk with ALMA. The left image shows the dust. The middle and the right image show CO, with the image on the right showing the velocity of the disk, displaying the rotation of the disk.

Spitzer spectroscopy showedsilicate dust grains with sizes of less than a fewmicrons. The crystalline mineralsforsterite andenstatite were identified from emission. Most of the dust mass of the disk is stored in grains larger than 1mm.[6] The disk was first resolved with theCARMA array. Published in 2013, 2M0444 was the first brown dwarf disk that was resolved in thermal emission. The disk radius was determined to be at least15–30 AU. The observation also found evidence for dust grains larger than 1 mm, which is seen as evidence for dust grain growth.[8] The disk was later also resolved with theVery Large Array (VLA). The observations also detected ionized gas emission from the disk at 1.36 cm.[9]

The disk was first observed withALMA in 2014, which detected rotationalcarbon monoxide (CO) emission from the disk. This observation determined an outer disk radius of139+20
−27
 AU
and a total disk mass of1.3±0.2 MJ.[12] In 2025 additional high-resolution ALMA observations were published. These have the highest resolution for this disk, with a resolution of0.046″ (or about6.4 AU). The CO emission was detected to be rotating around the brown dwarf, a phenomenon also called aKeplerian disk. Researchers tentatively detected a gap at about 13.7 AU, with a width of 2.8 AU. The gap would be adjacent to a ring at around 16.2 AU.[4] The gap was first suspected to exist in 2019 from thespectral energy distribution better fitting a disk with a gap, but this gap was suspected to be between 0.02 and0.27 AU. This study found a higher disk mass of2.05 MJ, which is enough to formearth-mass planets.[13]

Possible planet

[edit]

The detection of the tentative gap could be explained with a planet that is carving the gap at 13.7 AU. This planet would have a mass of0.3 to 7.7 M🜨 (betweensub-earth andsuper-earth).[4]

The 2M0444 planetary system[13][4]
Companion
(in order from star)
MassSemimajor axis
(AU)
Orbital period
(years)
EccentricityInclinationRadius
gap (from SED fitting)0.02–0.27AU
gap (from ALMA)12.3–15.1AU
b(unconfirmed)0.3–7.7M🜨13.7
ring (from ALMA)16.2AU49.9±0.5°
outer edge (CO map)<56AU

See also

[edit]

References

[edit]
  1. ^Roman, Nancy G. (1987)."Identification of a constellation from a position".Publications of the Astronomical Society of the Pacific.99 (617): 695.Bibcode:1987PASP...99..695R.doi:10.1086/132034. Constellation record for this object atVizieR.
  2. ^abcdVallenari, A.; et al. (Gaia collaboration) (2023)."Gaia Data Release 3. Summary of the content and survey properties".Astronomy and Astrophysics.674: A1.arXiv:2208.00211.Bibcode:2023A&A...674A...1G.doi:10.1051/0004-6361/202243940.S2CID 244398875. Gaia DR3 record for this source atVizieR.
  3. ^Lasker, Barry M.; Lattanzi, Mario G.; McLean, Brian J.; Bucciarelli, Beatrice; Drimmel, Ronald; Garcia, Jorge; Greene, Gretchen; Guglielmetti, Fabrizia; Hanley, Christopher; Hawkins, George; Laidler, Victoria G.; Loomis, Charles; Meakes, Michael; Mignani, Roberto; Morbidelli, Roberto (2008-07-11). "The Second-Generation Guide Star Catalog: Description and Properties".The Astronomical Journal.136 (2):735–766.arXiv:0807.2522.Bibcode:2008AJ....136..735L.doi:10.1088/0004-6256/136/2/735.ISSN 0004-6256.
  4. ^abcdefghAlejandro Santamaría Miranda; Curone, Pietro; Pérez, Laura; Kurtovic, Nicolás T.; Agurto-Gangas, Carolina; Sierra, Anibal; Itziar De Gregorio-Monsalvo; Huélamo, Nuria; Miley, James M.; Palau, Aína; Pinilla, Paola; Rebollido, Isabel; Ribas, Álvaro; Rivière-Marichalar, Pablo; Schreiber, Matthias R.; Sai, Jinshi; Carrera, Benjamín (2025)."Hints of Disk Substructure in the First Brown Dwarf with a Dynamical Mass Constraint".The Astrophysical Journal.986 (1): L11.arXiv:2505.08107.Bibcode:2025ApJ...986L..11S.doi:10.3847/2041-8213/add71f.
  5. ^abcdeLuhman, K. L. (2004-12-20). "New Brown Dwarfs and an Updated Initial Mass Function in Taurus*".The Astrophysical Journal.617 (2):1216–1232.arXiv:astro-ph/0411447.Bibcode:2004ApJ...617.1216L.doi:10.1086/425647.ISSN 0004-637X.
  6. ^abcdeBouy, H.; Huélamo, N.; Pinte, C.; Olofsson, J.; Navascués, D. Barrado y; Martín, E. L.; Pantin, E.; Monin, J.-L.; Basri, G.; Augereau, J.-C.; Ménard, F.; Duvert, G.; Duchêne, G.; Marchis, F.; Bayo, A. (2008-08-01). "Structural and compositional properties of brown dwarf disks: the case of 2MASS J04442713+2512164".Astronomy & Astrophysics.486 (3):877–890.arXiv:0803.2051.Bibcode:2008A&A...486..877B.doi:10.1051/0004-6361:20078866.ISSN 0004-6361.
  7. ^Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; Bouvier, J.; Roggero, N.; David, T. J. (2020-05-26)."Rotation of Low-mass Stars in Taurus with K2".The Astronomical Journal.159 (6): 273.arXiv:2004.04236.Bibcode:2020AJ....159..273R.doi:10.3847/1538-3881/ab893c.ISSN 0004-6256.
  8. ^abcRicci, L.; Isella, A.; Carpenter, J. M.; Testi, L. (February 2013). "CARMA Interferometric Observations of 2MASS J044427+2512: The First Spatially Resolved Observations of Thermal Emission of a Brown Dwarf Disk".The Astrophysical Journal.764 (2): L27.arXiv:1301.2624.Bibcode:2013ApJ...764L..27R.doi:10.1088/2041-8205/764/2/L27.ISSN 0004-637X.
  9. ^abRicci, L.; Rome, H.; Pinilla, P.; Facchini, S.; Birnstiel, T.; Testi, L. (September 2017)."VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512".The Astrophysical Journal.846 (1): 19.arXiv:1707.07197.Bibcode:2017ApJ...846...19R.doi:10.3847/1538-4357/aa81bf.ISSN 0004-637X.
  10. ^Gomez, Mercedes; Kenyon, Scott J.; Hartmann, Lee (May 1994). "A near-infrared survey for pre-main sequence stars in Taurus".The Astronomical Journal.107: 1850.Bibcode:1994AJ....107.1850G.doi:10.1086/116994.ISSN 0004-6256.
  11. ^Kenyon, Scott J.; Gomez, Mercedes; Marzke, Ronald O.; Hartmann, Lee (July 1994). "New Pre-Main-Sequence Stars in the Taurus-Auriga Molecular Cloud".The Astronomical Journal.108: 251.Bibcode:1994AJ....108..251K.doi:10.1086/117064.ISSN 0004-6256.
  12. ^Ricci, L.; Testi, L.; Natta, A.; Scholz, A.; de Gregorio-Monsalvo, I.; Isella, A. (2014-07-22). "Brown Dwarf Disks with Alma".The Astrophysical Journal.791 (1): 20.arXiv:1406.0635.Bibcode:2014ApJ...791...20R.doi:10.1088/0004-637x/791/1/20.hdl:10023/8607.ISSN 0004-637X.
  13. ^abRilinger, Anneliese M.; Espaillat, Catherine C.; Macías, Enrique (2019-06-19)."Modeling the Protoplanetary Disks of Two Brown Dwarfs in the Taurus Molecular Cloud".The Astrophysical Journal.878 (2): 103.arXiv:1905.05829.Bibcode:2019ApJ...878..103R.doi:10.3847/1538-4357/ab211d.ISSN 0004-637X.
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Star
clusters
NGC
Other
Nebulae
NGC
Other
Galaxies
NGC
Other
Galaxy clusters
Astronomical events
Retrieved from "https://en.wikipedia.org/w/index.php?title=2MASS_J04442713%2B2512164&oldid=1329908926"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp