Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

288 (number)

From Wikipedia, the free encyclopedia
This article is about the number 288. For other uses, see288 (disambiguation).
Natural number
← 287288 289 →
Cardinaltwo hundred eighty-eight
Ordinal288th
(two hundred eighty-eighth)
Factorization25 × 32
Greek numeralΣΠΗ´
Roman numeralCCLXXXVIII,cclxxxviii
Binary1001000002
Ternary1012003
Senary12006
Octal4408
Duodecimal20012
Hexadecimal12016

288 (two hundred [and] eighty-eight) is thenatural number following287 and preceding289.Because 288 = 2 · 12 · 12, it may also be called "twogross" or "two dozen dozen".

In mathematics

[edit]

Factorization properties

[edit]

Because itsprime factorization288=2532{\displaystyle 288=2^{5}\cdot 3^{2}} contains only the first twoprime numbers 2 and 3, 288 is a3-smooth number.[1] This factorization also makes it ahighly powerful number, a number with a record-setting value of the product of the exponents in its factorization.[2][3] Among thehighly abundant numbers, numbers with record-settingsums of divisors, it is one of only 13 such numbers with an odd divisor sum.[4]

Both 288 and289 = 172 arepowerful numbers, numbers in which all exponents of the prime factorization are larger than one.[5][6][7] This property is closely connected to being highly abundant with an odd divisor sum: all sufficiently large highly abundant numbers have an odd prime factor with exponent one, causing their divisor sum to be even.[4][8] 288 and 289 form only the second consecutive pair of powerful numbers after8 and 9.[5][6][7]

Factorial properties

[edit]

288 is asuperfactorial, a product of consecutivefactorials, since[5][9][10]288=1!2!3!4!=14233241.{\displaystyle 288=1!\cdot 2!\cdot 3!\cdot 4!=1^{4}\cdot 2^{3}\cdot 3^{2}\cdot 4^{1}.} Coincidentally, as well as being a product of descending powers, 288 is a sum of ascending powers:[11]288=11+22+33+44.{\displaystyle 288=1^{1}+2^{2}+3^{3}+4^{4}.}

288 appears prominently inStirling's approximation for the factorial, as the denominator of the second term of the Stirling series[12]n!2πn(ne)n(1+112n+1288n213951840n35712488320n4+).{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}\left(1+{\frac {1}{12n}}+{\frac {1}{288n^{2}}}-{\frac {139}{51840n^{3}}}-{\frac {571}{2488320n^{4}}}+\cdots \right).}

Figurate properties

[edit]

288 is connected to thefigurate numbers in multiple ways. It is apentagonal pyramidal number[13][14] and adodecagonal number.[14][15] Additionally, it is the index, in the sequence oftriangular numbers, of the fifthsquare triangular number:[14][16]41616=2882892=2042.{\displaystyle 41616={\frac {288\cdot 289}{2}}=204^{2}.}

Enumerative properties

[edit]

There are 288 different ways of completely filling in a4×4{\displaystyle 4\times 4}sudoku puzzle grid.[17][18] For square grids whose side length is the square of a prime number, such as 4 or 9, a completed sudoku puzzle is the same thing as a "pluperfect Latin square", ann×n{\displaystyle n\times n} array in which every dissection inton{\displaystyle n} rectangles of equal width and height to each other has one copy of each digit in each rectangle. Therefore, there are also 288 pluperfect Latin squares of order 4.[19] There are 288 different2×2{\displaystyle 2\times 2}invertible matrices modulo six,[20] and 288 different ways of placing two chess queens on a6×6{\displaystyle 6\times 6} board with toroidal boundary conditions so that they do not attack each other.[21] There are 288independent sets in a 5-dimensional hypercube, up to symmetries of the hypercube.[22]

In other areas

[edit]

In early 20th-centurymolecular biology, some mysticism surrounded the use of 288 to countprotein structures, largely based on the fact that it is a smooth number.[23][24]

A common mathematicalpun involves the fact that288 = 2 · 144, and that 144 is named as agross: "Q: Why should the number 288 never be mentioned? A: it is two gross."[25]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A003586 (3-smooth numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Sloane, N. J. A. (ed.)."Sequence A005934 (Highly powerful numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^Hardy, G. E.;Subbarao, M. V. (1983)."Highly powerful numbers"(PDF).Congressus Numerantium.37:277–307.MR 0703589.
  4. ^abSloane, N. J. A. (ed.)."Sequence A128700 (Highly abundant numbers with an odd divisor sum)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^abcWells, David (1997).The Penguin Dictionary of Curious and Interesting Numbers. Penguin. p. 137.ISBN 9780140261493.
  6. ^abSloane, N. J. A. (ed.)."Sequence A060355 (Numbers n such that n and n+1 are a pair of consecutive powerful numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^abDe Koninck, Jean-Marie (2009).Those fascinating numbers. Providence, Rhode Island: American Mathematical Society. p. 69.doi:10.1090/mbk/064.ISBN 978-0-8218-4807-4.MR 2532459.
  8. ^Alaoglu, L.;Erdős, P. (1944)."On highly composite and similar numbers"(PDF).Transactions of the American Mathematical Society.56 (3):448–469.doi:10.2307/1990319.JSTOR 1990319.MR 0011087.
  9. ^Sloane, N. J. A. (ed.)."Sequence A000178 (Superfactorials)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  10. ^Kozen, Dexter;Silva, Alexandra (2013). "On Moessner's theorem".The American Mathematical Monthly.120 (2):131–139.doi:10.4169/amer.math.monthly.120.02.131.hdl:2066/111198.JSTOR 10.4169/amer.math.monthly.120.02.131.MR 3029938.S2CID 8799795.
  11. ^Sloane, N. J. A. (ed.)."Sequence A001923".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  12. ^Sloane, N. J. A. (ed.)."Sequence A001164 (Stirling's formula: denominators of asymptotic series for Gamma function)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  13. ^Sloane, N. J. A. (ed.)."Sequence A002411 (Pentagonal pyramidal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^abcDeza, Elena;Deza, Michel (2012).Figurate Numbers. World Scientific. pp. 3, 23, 211.ISBN 9789814355483.
  15. ^Sloane, N. J. A. (ed.)."Sequence A051624 (12-gonal (or dodecagonal) numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  16. ^Sloane, N. J. A. (ed.)."Sequence A001108 (a(n)-th triangular number is a square)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  17. ^Sloane, N. J. A. (ed.)."Sequence A107739 (Number of (completed) sudokus (or Sudokus) of size n^2 X n^2)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^Taalman, Laura (September 2007). "Taking Sudoku seriously".Math Horizons.15 (1):5–9.doi:10.1080/10724117.2007.11974720.JSTOR 25678701.S2CID 126371771.
  19. ^Sloane, N. J. A. (ed.)."Sequence A108395 (Number of pluperfect Latin squares of order n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^Sloane, N. J. A. (ed.)."Sequence A000252 (Number of invertible 2 X 2 matrices mod n)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^Sloane, N. J. A. (ed.)."Sequence A172517 (Number of ways to place 2 nonattacking queens on an n X n toroidal board)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  22. ^Sloane, N. J. A. (ed.)."Sequence A060631 (Number of independent sets in an n-dimensional hypercube modulo symmetries of the hypercube)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  23. ^Potter, Robert D. (February 12, 1938). "Building blocks of life ruled by the number 288: This number and its multiples found everywhere in groupings of amino acids to form proteins".The Science News-Letter.33 (7):99–100.doi:10.2307/3914385.JSTOR 3914385.
  24. ^Klotz, Irving M. (October 1993)."Biogenesis: number mysticism in protein thinking".The FASEB Journal.7 (13):1219–1225.doi:10.1096/fasebj.7.13.8405807.PMID 8405807.S2CID 13276657.
  25. ^Nowlan, Robert A. (2017). "Logical Nonsense".Masters of Mathematics: The Problems They Solved, Why These Are Important, and What You Should Know about Them. Sense Publishers. pp. 263–268.doi:10.1007/978-94-6300-893-8_17.ISBN 978-94-6300-893-8. See p. 284.
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s
Retrieved from "https://en.wikipedia.org/w/index.php?title=288_(number)&oldid=1312417501"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp