Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

257-gon

From Wikipedia, the free encyclopedia
Polygon with 257 sides
Regular 257-gon
A regular 257-gon
TypeRegular polygon
Edges andvertices257
Schläfli symbol{257}
Coxeter–Dynkin diagrams
Symmetry groupDihedral (D257), order 2×257
Internal angle (degrees)178.599222°
PropertiesConvex,cyclic,equilateral,isogonal,isotoxal
Dual polygonSelf

Ingeometry, a257-gon is apolygon with 257 sides. The sum of the interior angles of any non-self-intersecting 257-gon is 45,900°.

Regular 257-gon

[edit]

The area of aregular 257-gon is (witht = edge length)

A=2574t2cotπ2575255.751t2.{\displaystyle A={\frac {257}{4}}t^{2}\cot {\frac {\pi }{257}}\approx 5255.751t^{2}.}

A whole regular 257-gon is not visually discernible from acircle, and its perimeter differs from that of thecircumscribed circle by about 24parts per million.

Construction

[edit]

The regular 257-gon (one with all sides equal and all angles equal) is of interest for being aconstructible polygon: that is, it can beconstructed using a compass and an unmarked straightedge. This is because 257 is aFermat prime, being of the form 22n + 1 (in this casen = 3). Thus, the valuescosπ257{\displaystyle \cos {\frac {\pi }{257}}} andcos2π257{\displaystyle \cos {\frac {2\pi }{257}}} are 128-degreealgebraic numbers, and like allconstructible numbers they can be written usingsquare roots and no higher-order roots.

Although it was known toGauss by 1801 that the regular 257-gon was constructible, the first explicit constructions of a regular 257-gon were given byMagnus Georg Paucker (1822)[1] andFriedrich Julius Richelot (1832).[2] Another method involves the use of 150 circles, 24 beingCarlyle circles: this method is pictured below, along with a full construction showing all steps. One of these Carlyle circles solves thequadratic equationx2 + x − 64 = 0.[3]

  • Step 1
    Step 1
  • Step 2
    Step 2
  • Step 3
    Step 3
  • Step 4
    Step 4
  • Step 5
    Step 5
  • Step 6
    Step 6
  • Step 7
    Step 7
  • Step 8
    Step 8

Symmetry

[edit]

Theregular 257-gon hasDih257 symmetry, order 514. Since 257 is aprime number there is one subgroup with dihedral symmetry: Dih1, and 2cyclic group symmetries: Z257, and Z1.

257-gram

[edit]

A 257-gram is a 257-sidedstar polygon. As 257 is prime, there are 127 regular forms generated bySchläfli symbols {257/n} for allintegers 2 ≤ n ≤ 128 as2572=128{\displaystyle \left\lfloor {\frac {257}{2}}\right\rfloor =128}.

Below is a view of {257/128}, with 257 nearly radial edges, with its star vertexinternal angles 180°/257 (~0.7°).

See also

[edit]

References

[edit]
  1. ^Magnus Georg Paucker (1822)."Das regelmäßige Zweyhundersiebenundfunfzig-Eck im Kreise".Jahresverhandlungen der Kurländischen Gesellschaft für Literatur und Kunst (in German).2: 188. Retrieved 8. December 2015.
  2. ^Friedrich Julius Richelot (1832)."De resolutione algebraica aequationis x257 = 1, ..."Journal für die reine und angewandte Mathematik (in Latin).9:1–26,146–161,209–230,337–358. Retrieved 8. December 2015.
  3. ^DeTemple, Duane W. (Feb 1991)."Carlyle circles and Lemoine simplicity of polygon constructions"(PDF).The American Mathematical Monthly.98 (2):97–108.doi:10.2307/2323939.JSTOR 2323939. Archived fromthe original(PDF) on 2015-12-21. Retrieved6 November 2011.

External links

[edit]
Triangles
Quadrilaterals
By number
of sides
1–10 sides
11–20 sides
>20 sides
Star polygons
Classes
Retrieved from "https://en.wikipedia.org/w/index.php?title=257-gon&oldid=1337411672"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp