Natural number
193 (one hundred [and] ninety-three ) is thenatural number following192 and preceding194 .
193 is the number ofcompositions of14 into distinct parts.[ 1] Indecimal , it is the seventeenthfull repetend prime , orlong prime .[ 2]
It is part of the fourteenth pair oftwin primes ( 191 , 193 ) {\displaystyle (191,193)} ,[ 5] the seventh trio ofprime triplets ( 193 , 197 , 199 ) {\displaystyle (193,197,199)} ,[ 6] and the fourth set ofprime quadruplets ( 191 , 193 , 197 , 199 ) {\displaystyle (191,193,197,199)} .[ 7] Aside from itself, thefriendly giant (the largestsporadic group ) holds a total of 193conjugacy classes .[ 8] It also holds at least 44maximal subgroups aside from thedouble cover ofB {\displaystyle \mathbb {B} } (the forty-fourth prime number is 193).[ 8] [ 9] [ 10]
193 is also the eighthnumerator of convergents toEuler's number ; correct to three decimal places:e ≈ 193 71 ≈ 2.718 309 859 … {\displaystyle e\approx {\tfrac {193}{71}}\approx 2.718\;{\color {red}309\;859\;\ldots }} [ 11] The denominator is71 , which is the largestsupersingular prime that uniquely divides theorder of the friendly giant.[ 12] [ 13] [ 14]
^ Sloane, N. J. A. (ed.)."Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2022-05-24 .^ Sloane, N. J. A. (ed.)."Sequence A001913 (Full reptend primes: primes with primitive root 10.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^ E. Friedman, "What's Special About This Number Archived 2018-02-23 at theWayback Machine " Accessed 2 January 2006 and again 15 August 2007. ^ Sloane, N. J. A. (ed.)."Sequence A005109 (Class 1- (or Pierpont) primes: primes of the form 2^t*3^u + 1)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation.^ Sloane, N. J. A. (ed.)."Sequence A006512 (Greater of twin primes.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^ Sloane, N. J. A. (ed.)."Sequence A022005 (Initial members of prime triples (p, p+4, p+6).)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^ Sloane, N. J. A. (ed.)."Sequence A136162 (List of prime quadruplets {p, p+2, p+6, p+8}.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^a b Wilson, R.A. ;Parker, R.A. ; Nickerson, S.J.; Bray, J.N. (1999)."ATLAS: Monster group M" .ATLAS of Finite Group Representations .^ Wilson, Robert A. (2016)."Is the Suzuki group Sz(8) a subgroup of the Monster?" (PDF) .Bulletin of the London Mathematical Society .48 (2): 356.doi :10.1112/blms/bdw012 .MR 3483073 .S2CID 123219818 . ^ Dietrich, Heiko; Lee, Melissa; Popiel, Tomasz (May 2023). "The maximal subgroups of the Monster":1– 11.arXiv :2304.14646 .S2CID 258676651 . {{cite journal }}:Cite journal requires|journal= (help ) ^ Sloane, N. J. A. (ed.)."Sequence A007676 (Numerators of convergents to e.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^ Sloane, N. J. A. (ed.)."Sequence A007677 (Denominators of convergents to e.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^ Sloane, N. J. A. (ed.)."Sequence A002267 (The 15 supersingular primes: primes dividing order of Monster simple group.)" .TheOn-Line Encyclopedia of Integer Sequences . OEIS Foundation. Retrieved2023-03-02 .^ Luis J. Boya (2011-01-16). "Introduction to Sporadic Groups".Symmetry, Integrability and Geometry: Methods and Applications .7 : 13.arXiv :1101.3055 .Bibcode :2011SIGMA...7..009B .doi :10.3842/SIGMA.2011.009 .S2CID 16584404 .
400 to 999
400s, 500s, and 600s 700s, 800s, and 900s
1000s and 10,000s
1000s 10,000s
100,000s to 10,000,000,000,000s
100,000 1,000,000 10,000,000 100,000,000 1,000,000,000 10,000,000,000 100,000,000,000 1,000,000,000,000 10,000,000,000,000