Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

193 (number)

From Wikipedia, the free encyclopedia
Natural number
← 192193 194 →
Cardinalone hundred ninety-three
Ordinal193rd
(one hundred ninety-third)
Factorizationprime
Prime44th
Divisors1, 193
Greek numeralΡϞΓ´
Roman numeralCXCIII,cxciii
Binary110000012
Ternary210113
Senary5216
Octal3018
Duodecimal14112
HexadecimalC116

193 (one hundred [and] ninety-three) is thenatural number following192 and preceding194.

In mathematics

[edit]

193 is the number ofcompositions of14 into distinct parts.[1] Indecimal, it is the seventeenthfull repetend prime, orlong prime.[2]

Aside from itself, thefriendly giant (the largestsporadic group) holds a total of 193conjugacy classes.[8] It also holds at least 44maximal subgroups aside from thedouble cover ofB{\displaystyle \mathbb {B} } (the forty-fourth prime number is 193).[8][9][10]

193 is also the eighthnumerator of convergents toEuler's number; correct to three decimal places:e193712.718309859{\displaystyle e\approx {\tfrac {193}{71}}\approx 2.718\;{\color {red}309\;859\;\ldots }}[11] The denominator is71, which is the largestsupersingular prime that uniquely divides theorder of the friendly giant.[12][13][14]

See also

[edit]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2022-05-24.
  2. ^Sloane, N. J. A. (ed.)."Sequence A001913 (Full reptend primes: primes with primitive root 10.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  3. ^E. Friedman, "What's Special About This NumberArchived 2018-02-23 at theWayback Machine" Accessed 2 January 2006 and again 15 August 2007.
  4. ^Sloane, N. J. A. (ed.)."Sequence A005109 (Class 1- (or Pierpont) primes: primes of the form 2^t*3^u + 1)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^Sloane, N. J. A. (ed.)."Sequence A006512 (Greater of twin primes.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  6. ^Sloane, N. J. A. (ed.)."Sequence A022005 (Initial members of prime triples (p, p+4, p+6).)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  7. ^Sloane, N. J. A. (ed.)."Sequence A136162 (List of prime quadruplets {p, p+2, p+6, p+8}.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  8. ^abWilson, R.A.;Parker, R.A.; Nickerson, S.J.; Bray, J.N. (1999)."ATLAS: Monster group M".ATLAS of Finite Group Representations.
  9. ^Wilson, Robert A. (2016)."Is the Suzuki group Sz(8) a subgroup of the Monster?"(PDF).Bulletin of the London Mathematical Society.48 (2): 356.doi:10.1112/blms/bdw012.MR 3483073.S2CID 123219818.
  10. ^Dietrich, Heiko; Lee, Melissa; Popiel, Tomasz (May 2023). "The maximal subgroups of the Monster":1–11.arXiv:2304.14646.S2CID 258676651.{{cite journal}}:Cite journal requires|journal= (help)
  11. ^Sloane, N. J. A. (ed.)."Sequence A007676 (Numerators of convergents to e.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  12. ^Sloane, N. J. A. (ed.)."Sequence A007677 (Denominators of convergents to e.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  13. ^Sloane, N. J. A. (ed.)."Sequence A002267 (The 15 supersingular primes: primes dividing order of Monster simple group.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-03-02.
  14. ^Luis J. Boya (2011-01-16). "Introduction to Sporadic Groups".Symmetry, Integrability and Geometry: Methods and Applications.7: 13.arXiv:1101.3055.Bibcode:2011SIGMA...7..009B.doi:10.3842/SIGMA.2011.009.S2CID 16584404.
Wikimedia Commons has media related to193 (number).
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s
Retrieved from "https://en.wikipedia.org/w/index.php?title=193_(number)&oldid=1298126451"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp