Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

183 (number)

From Wikipedia, the free encyclopedia
Natural number
← 182183 184 →
Cardinalone hundred eighty-three
Ordinal183rd
(one hundred eighty-third)
Factorization3 × 61
Divisors1, 3, 61, 183
Greek numeralΡΠΓ´
Roman numeralCLXXXIII,clxxxiii
Binary101101112
Ternary202103
Senary5036
Octal2678
Duodecimal13312
HexadecimalB716

183 (one hundred [and] eighty-three) is thenatural number following182 and preceding184.

In mathematics

[edit]

183 is aperfect totient number, a number that is equal to the sum of itsiteratedtotients.[1]

Because183=132+13+1{\displaystyle 183=13^{2}+13+1}, it is the number ofpoints in aprojective plane over thefinite fieldZ13{\displaystyle \mathbb {Z} _{13}}.[2] It is a repdigit intredecimal (11113). 183 is the fourth element of adivisibility sequence1,3,13,183,{\displaystyle 1,3,13,183,\dots } in which then{\displaystyle n}th numberan{\displaystyle a_{n}} can be computed asan=an12+an1+1=x2n,{\displaystyle a_{n}=a_{n-1}^{2}+a_{n-1}+1={\bigl \lfloor }x^{2^{n}}{\bigr \rfloor },}for atranscendental numberx1.38509{\displaystyle x\approx 1.38509}.[3][4] This sequence counts the number of trees of heightn{\displaystyle \leq n} in which each node can have at most two children.[3][5]

There are 183 differentsemiorders on four labeled elements.[6]

See also

[edit]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A082897 (Perfect totient numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^Sloane, N. J. A. (ed.)."Sequence A002061 (Central polygonal numbers)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  3. ^abSloane, N. J. A. (ed.)."Sequence A002065".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^Dubickas, Artūras (2022). "Transcendency of some constants related to integer sequences of polynomial iterations".Ramanujan Journal.57 (2):569–581.doi:10.1007/s11139-021-00428-5.MR 4372232.S2CID 236289092.
  5. ^Kalman, Stan C.; Kwasny, Barry L. (January 1995)."Tail-recursive distributed representations and simple recurrent networks".Connection Science.7 (1):61–80.doi:10.1080/09540099508915657.
  6. ^Sloane, N. J. A. (ed.)."Sequence A006531 (Semiorders on n elements)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
Wikimedia Commons has media related to183 (number).
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s


Stub icon

This article about anumber is astub. You can help Wikipedia byadding missing information.

Retrieved from "https://en.wikipedia.org/w/index.php?title=183_(number)&oldid=1278110387"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp