Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

104 (number)

From Wikipedia, the free encyclopedia
Natural number
← 103104 105 →
Cardinalone hundred four
Ordinal104th
(one hundred fourth)
Factorization23 × 13
Divisors1, 2, 4, 8, 13, 26, 52, 104
Greek numeralΡΔ´
Roman numeralCIV,civ
Binary11010002
Ternary102123
Senary2526
Octal1508
Duodecimal8812
Hexadecimal6816

104 (one hundred [and] four) is thenatural number following103 and preceding105.

In mathematics

[edit]

104 is arefactorable number[1] and aprimitive semiperfect number.[2]

The smallest known 4-regularmatchstick graph has 104edges and 52vertices, where four unitline segments intersect at every vertex.[3]

Thesecond largest sporadic groupB{\displaystyle \mathbb {B} } has aMcKay–Thompson series, representative of aprincipal modular function isT2A(τ){\displaystyle T_{2A}(\tau )}, with constant terma(0)=104{\displaystyle a(0)=104}:[4]

j2A(τ)=T2A(τ)+104=1q+104+4372q+96256q2+{\displaystyle j_{2A}(\tau )=T_{2A}(\tau )+104={\frac {1}{q}}+104+4372q+96256q^{2}+\cdots }

TheTits groupT{\displaystyle \mathbb {T} }, which is the onlyfinite simple group to classify as either anon-strict group ofLie type orsporadic group, holds aminimal faithful complex representation in 104 dimensions.[5]

References

[edit]
  1. ^Sloane, N. J. A. (ed.)."Sequence A033950 (Refactorable numbers: number of divisors of k divides k. Also known as tau numbers.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-07-31.
  2. ^Sloane, N. J. A. (ed.)."Sequence A006036 (Primitive pseudoperfect numbers.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2016-05-27.
  3. ^Winkler, Mike; Dinkelacker, Peter; Vogel, Stefan (2017). "New minimal (4; n)-regular matchstick graphs".Geombinatorics Quarterly.XXVII (1). Colorado Springs, CO:University of Colorado, Colorado Springs:26–44.arXiv:1604.07134.S2CID 119161796.Zbl 1373.05125.
  4. ^Sloane, N. J. A. (ed.)."Sequence A007267 (Expansion of 16 * (1 + k^2)^4 /(k * k'^2)^2 in powers of q where k is the Jacobian elliptic modulus, k' the complementary modulus and q is the nome.)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved2023-07-31.
  5. ^Lubeck, Frank (2001)."Smallest degrees of representations of exceptional groups of Lie type".Communications in Algebra.29 (5). Philadelphia, PA:Taylor & Francis: 2151.doi:10.1081/AGB-100002175.MR 1837968.S2CID 122060727.Zbl 1004.20003.
0 to 199
200 to 399
400 to 999
1000s and 10,000s
1000s
10,000s
100,000s to 10,000,000,000,000s


Stub icon

This article about anumber is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=104_(number)&oldid=1315929501"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp