Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

10-simplex

From Wikipedia, the free encyclopedia
Convex regular 10-polytope
Regular hendecaxennon
(10-simplex)

Orthogonal projection
insidePetrie polygon
TypeRegular10-polytope
Familysimplex
Schläfli symbol{3,3,3,3,3,3,3,3,3}
Coxeter-Dynkin
diagram
9-faces119-simplex
8-faces558-simplex
7-faces1657-simplex
6-faces3306-simplex
5-faces4625-simplex
4-faces4625-cell
Cells330tetrahedron
Faces165triangle
Edges55
Vertices11
Vertex figure9-simplex
Petrie polygonhendecagon
Coxeter groupA10 [3,3,3,3,3,3,3,3,3]
DualSelf-dual
Propertiesconvex

Ingeometry, a 10-simplex is a self-dualregular10-polytope. It has 11vertices, 55edges, 165 trianglefaces, 330 tetrahedralcells, 4625-cell 4-faces, 4625-simplex 5-faces, 3306-simplex 6-faces, 1657-simplex 7-faces, 558-simplex 8-faces, and 119-simplex 9-faces. Itsdihedral angle is cos−1(1/10), or approximately 84.26°.

It can also be called ahendecaxennon, orhendeca-10-tope, as an 11-facetted polytope in 10-dimensions. Acronym:ux[1]

Thenamehendecaxennon is derived fromhendeca for 11facets inGreek and-xenn (variation of ennea for nine), having 9-dimensional facets, and-on.

Coordinates

[edit]

TheCartesian coordinates of the vertices of an origin-centered regular 10-simplex having edge length 2 are:

(1/55, 1/45, 1/6, 1/28, 1/21, 1/15, 1/10, 1/6, 1/3, ±1){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ {\sqrt {1/3}},\ \pm 1\right)}
(1/55, 1/45, 1/6, 1/28, 1/21, 1/15, 1/10, 1/6, 21/3, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ {\sqrt {1/6}},\ -2{\sqrt {1/3}},\ 0\right)}
(1/55, 1/45, 1/6, 1/28, 1/21, 1/15, 1/10, 3/2, 0, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ {\sqrt {1/10}},\ -{\sqrt {3/2}},\ 0,\ 0\right)}
(1/55, 1/45, 1/6, 1/28, 1/21, 1/15, 22/5, 0, 0, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ {\sqrt {1/15}},\ -2{\sqrt {2/5}},\ 0,\ 0,\ 0\right)}
(1/55, 1/45, 1/6, 1/28, 1/21, 5/3, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ {\sqrt {1/21}},\ -{\sqrt {5/3}},\ 0,\ 0,\ 0,\ 0\right)}
(1/55, 1/45, 1/6, 1/28, 12/7, 0, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ {\sqrt {1/28}},\ -{\sqrt {12/7}},\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(1/55, 1/45, 1/6, 7/4, 0, 0, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ 1/6,\ -{\sqrt {7/4}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(1/55, 1/45, 4/3, 0, 0, 0, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/55}},\ {\sqrt {1/45}},\ -4/3,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(1/55, 31/5, 0, 0, 0, 0, 0, 0, 0, 0){\displaystyle \left({\sqrt {1/55}},\ -3{\sqrt {1/5}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}
(20/11, 0, 0, 0, 0, 0, 0, 0, 0, 0){\displaystyle \left(-{\sqrt {20/11}},\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0,\ 0\right)}

More simply, the vertices of the10-simplex can be positioned in 11-space as permutations of (0,0,0,0,0,0,0,0,0,0,1). This construction is based onfacets of the11-orthoplex.

Images

[edit]
orthographic projections
AkCoxeter planeA10A9A8
Graph
Dihedral symmetry[11][10][9]
Ak Coxeter planeA7A6A5
Graph
Dihedral symmetry[8][7][6]
Ak Coxeter planeA4A3A2
Graph
Dihedral symmetry[5][4][3]

Related polytopes

[edit]

The2-skeleton of the 10-simplex is topologically related to the11-cellabstract regular polychoron which has the same 11 vertices, 55 edges, but only 1/3 the faces (55).

References

[edit]
  1. ^Klitzing,(x3o3o3o3o3o3o3o3o3o – ux).

External links

[edit]
Fundamental convexregular anduniform polytopes in dimensions 2–10
FamilyAnBnI2(p) /DnE6 /E7 /E8 /F4 /G2Hn
Regular polygonTriangleSquarep-gonHexagonPentagon
Uniform polyhedronTetrahedronOctahedronCubeDemicubeDodecahedronIcosahedron
Uniform polychoronPentachoron16-cellTesseractDemitesseract24-cell120-cell600-cell
Uniform 5-polytope5-simplex5-orthoplex5-cube5-demicube
Uniform 6-polytope6-simplex6-orthoplex6-cube6-demicube122221
Uniform 7-polytope7-simplex7-orthoplex7-cube7-demicube132231321
Uniform 8-polytope8-simplex8-orthoplex8-cube8-demicube142241421
Uniform 9-polytope9-simplex9-orthoplex9-cube9-demicube
Uniform 10-polytope10-simplex10-orthoplex10-cube10-demicube
Uniformn-polytopen-simplexn-orthoplexn-cuben-demicube1k22k1k21n-pentagonal polytope
Topics:Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations
Retrieved from "https://en.wikipedia.org/w/index.php?title=10-simplex&oldid=1303750979"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp