Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

-yllion

From Wikipedia, the free encyclopedia
Mathematical notation
This article includes a list ofgeneral references, butit lacks sufficient correspondinginline citations. Please help toimprove this article byintroducing more precise citations.(August 2019) (Learn how and when to remove this message)
Part ofa series on
Numeral systems
List of numeral systems

-yllion (pronounced/ljən/)[1] is a proposal fromDonald Knuth for the terminology and symbols of an alternatedecimal superbase[clarification needed] system. In it, he adapts the familiar English terms forlarge numbers to provide a systematic set ofnames for much larger numbers. In addition to providing an extended range,-yllion also dodges thelong and short scale ambiguity of -illion.

Knuth's digit grouping isexponential instead of linear; each division doubles the number of digits handled, whereas the familiar system only adds three or six more. His system is basically the same as one of the ancient and now-unusedChinese numeral systems, in which units stand for 104, 108, 1016, 1032, ..., 102n, and so on (with an exception that the -yllion proposal does not use a word forthousand which the original Chinese numeral system has). Today the corresponding Chinese characters are used for 104, 108, 1012, 1016, and so on.

Details and examples

[edit]
This articleshould specify the language of its non-English content using{{lang}} or{{langx}},{{transliteration}} for transliterated languages, and{{IPA}} for phonetic transcriptions, with an appropriateISO 639 code. Wikipedia'smultilingual support templates may also be used.See why.(September 2021)
Look up-yllion in Wiktionary, the free dictionary.

In Knuth's-yllion proposal:

  • 1 to 999 still have their usual names.
  • 1000 to 9999 are divided before the 2nd-last digit and named "foo hundredbar." (e.g. 1234 is "twelve hundred thirty-four"; 7623 is "seventy-six hundred twenty-three")
  • 104 to 108 − 1 are divided before the 4th-last digit and named "foomyriadbar". Knuth also introduces at this level a grouping symbol (comma) for the numeral. So 382,1902 is "three hundred eighty-two myriad nineteen hundred two."
  • 108 to 1016 − 1 are divided before the 8th-last digit and named "foo myllionbar", and a semicolon separates the digits. So 1,0002;0003,0004 is "one myriad two myllion, three myriad four."
  • 1016 to 1032 − 1 are divided before the 16th-last digit and named "foo byllionbar", and a colon separates the digits. So 12:0003,0004;0506,7089 is "twelve byllion, three myriad four myllion, five hundred six myriad seventy hundred eighty-nine."
  • etc.

Each new number name is the square of the previous one — therefore, each new name covers twice as many digits. Knuth continues borrowing the traditional names changing "illion" to "yllion" on each one. Abstractly, then, "onen-yllion" is102n+2{\displaystyle 10^{2^{n+2}}}. "One trigintyllion" (10232{\displaystyle 10^{2^{32}}}) would have 232 + 1, or 42;9496,7297, or nearly forty-three myllion (4300 million) digits (by contrast, a conventional "trigintillion" has merely 94 digits — not even a hundred, let alone a thousand million, and still 7 digits short of a googol). Better yet, "one centyllion" (102102{\displaystyle 10^{2^{102}}}) would have 2102 + 1, or 507,0602;4009,1291:7605,9868;1282,1505, or about 1/20 of a tryllion digits, whereas a conventional "centillion" has only 304 digits.

The correspondingChinese "long scale" numerals are given, with thetraditional form listed before thesimplified form. Same numerals are used in the Ancient Greek numeral system, and also the Chinese "short scale" (new number name every power of 10 after 1000 (or 103+n)), "myriad scale" (new number name every 104n), and "mid scale" (new number name every 108n). Today these Chinese numerals are still in use, but are used in their "myriad scale" values, which is also used inJapanese and inKorean. For a more extensive table, seeMyriad system.

ValueNameNotationStandard English name (short scale)Ancient GreekChinese ("long scale")Pīnyīn (Mandarin)Jyutping (Cantonese)Pe̍h-ōe-jī (Hokkien)
100One1Oneεἷς (heîs)jat1it/chit
101Ten10Tenδέκα (déka)shísap6si̍p/cha̍p
102One hundred100One hundredἑκατόν (hekatón)bǎibaak3pah
103Ten hundred1000One thousandχίλιοι (khī́lioi)qiāncin1chhian
104One myriad1,0000Ten thousandμύριοι (mýrioi)萬, 万wànmaan6bān
105Ten myriad10,0000One hundred thousandδεκάκις μύριοι (dekákis mýrioi)十萬, 十万shíwànsap6 maan6si̍p/cha̍p bān
106One hundred myriad100,0000One millionἑκατοντάκις μύριοι (hekatontákis mýrioi)百萬, 百万bǎiwànbaak3 maan6pah bān
107Ten hundred myriad1000,0000Ten millionχιλιάκις μύριοι (khiliákis mýrioi)千萬, 千万qiānwàncin1 maan6chhian bān
108One myllion1;0000,0000One hundred millionμυριάκις μύριοι (muriákis mýrioi)億, 亿jik1ek
109Ten myllion10;0000,0000One billionδεκάκις μυριάκις μύριοι (dekákis muriákis mýrioi)十億, 十亿shíyìsap6 jik1si̍p/cha̍p ek
1010One hundred myllion100;0000,0000Ten billionἑκατοντάκις μυριάκις μύριοι (hekatontákis muriákis múrioi)百億, 百亿bǎiyìbaak3 jik1pah ek
1011Ten hundred myllion1000;0000,0000One hundred billionχῑλῐάκῐς μυριάκις μύριοι (khīliákis muriákis múrioi)千億, 千亿qiānyìcin1 jik1chhian ek
1012One myriad myllion1,0000;0000,0000One trillionμυριάκις μυριάκις μύριοι (muriákis muriákis mýrioi)萬億, 万亿wànyìmaan6 jik1bān ek
1013Ten myriad myllion10,0000;0000,0000Ten trillionδεκάκις μυριάκις μυριάκις μύριοι (dekákis muriákis muriákis mýrioi)十萬億, 十万亿shíwànyìsap6 maan6 jik1si̍p/cha̍p bān ek
1014One hundred myriad myllion100,0000;0000,0000One hundred trillionἑκατοντάκις μυριάκις μυριάκις μύριοι (hekatontákis muriákis muriákis mýrioi)百萬億, 百万亿bǎiwànyìbaak3 maan6 jik1pah bān ek
1015Ten hundred myriad myllion1000,0000;0000,0000One quadrillionχιλιάκις μυριάκις μυριάκις μύριοι (khiliákis muriákis muriákis mýrioi)千萬億, 千万亿qiānwànyìcin1 maan6 jik1chhian bān ek
1016One byllion1:0000,0000;0000,0000Ten quadrillionμυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis mýrioi)zhàosiu6tiāu
1024One myllion byllion1;0000,0000:0000,0000;0000,0000One septillionμυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis muriákis mýrioi)億兆, 亿兆yìzhàojik1 siu6ek tiāu
1032One tryllion1'0000,0000;0000,0000:0000,0000;0000,0000One hundred nonillionμυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μυριάκις μύριοι (muriákis muriákis muriákis muriákis muriákis muriákis muriákis mýrioi)jīngging1kiaⁿ
1064One quadryllionTen vigintilliongāigoi1kai
10128One quintyllionOne hundred unquadragintillionzi2chi
10256One sextyllionTen quattuoroctogintillionrángjoeng4liōng
10512One septyllionOne hundred novensexagintacentillion溝, 沟gōukau1kau
101024One octyllionTen quadragintatrecentillion澗, 涧jiàngaan3kán
102048One nonyllionOne hundred unoctogintasescentillionzhēngzing3chiàⁿ
104096One decyllionTen milliquattuorsexagintatrecentillion載, 载zàizoi3chài

Latin- prefix

[edit]

In order to construct names of the formn-yllion for large values ofn, Knuth appends the prefix "latin-" to the name ofn without spaces and uses that as the prefix forn. For example, the number "latintwohundredyllion" corresponds ton = 200, and hence to the number102202{\displaystyle 10^{2^{202}}}.

Negative powers

[edit]

To refer to small quantities with this system, the suffix-th is used.

For instance,104{\displaystyle 10^{-4}} is amyriadth.1016777216{\displaystyle 10^{-16777216}} is avigintyllionth.

See also

[edit]

References

[edit]
  1. ^"Large Numbers (Page 2) at MROB".
Publications
Software
Fonts
Literate programming
Algorithms
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=-yllion&oldid=1322359112"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp