Thecapacitance of a capacitor is one farad when onecoulomb of charge changes the potential between the plates by onevolt.[1][2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt.[3]
The relationship between capacitance, charge, and potential difference is linear. For example, if the potential difference across acapacitor is halved, the quantity of charge stored by that capacitor will also be halved.
For most applications, the farad is an impractically large unit of capacitance. Most electrical and electronic applications are covered by the followingSI prefixes:
1 mF (millifarad, one thousandth (10−3) of a farad) = 0.001 F =1000 μF =1000000000 pF
1 μF (microfarad, one millionth (10−6) of a farad) = 0.000 001 F =1000 nF =1000000 pF
1 nF (nanofarad, one billionth (10−9) of a farad) = 0.000 000 001 F = 0.001 μF =1000 pF
1 pF (picofarad, one trillionth (10−12) of a farad) = 0.000 000 000 001 F = 0.001 nF
The term "farad" was originally coined byLatimer Clark andCharles Bright in 1861,[5] in honor ofMichael Faraday, for a unit of quantity of charge, and by 1873, the farad had become a unit of capacitance.[6] In 1881, at the International Congress of Electricians in Paris, the name farad was officially used for the unit of electrical capacitance.[7][8]
Acapacitor generally consists of two conducting surfaces, frequently referred to as plates, separated by an insulating layer usually referred to as adielectric. The original capacitor was theLeyden jar developed in the 18th century. It is the accumulation of electric charge on the plates that results incapacitance. Modern capacitors are constructed using a range of manufacturing techniques and materials to provide the extraordinarily wide range of capacitance values used inelectronics applications from femtofarads to farads, with maximum-voltage ratings ranging from a fewvolts to several kilovolts.
Values of capacitors are usually specified in terms ofSI prefixes of farads (F),microfarads (μF),nanofarads (nF) andpicofarads (pF).[9] Themillifarad (mF) is rarely used in practice; a capacitance of 4.7 mF (0.0047 F), for example, is instead written as4700 μF. Thenanofarad (nF) is used more often in Europe than in the United States.[10] The size of commercially available capacitors ranges from around 0.1 pF to5000F (5 kF)supercapacitors.Parasitic capacitance in high-performanceintegrated circuits can be measured in femtofarads (1 fF = 0.001 pF = 10−15 F), while high-performance test equipment can detect changes in capacitance on the order of tens of attofarads (1 aF = 10−18 F).[11]
A value of 0.1 pF is about the smallest available in capacitors for general use in electronic design, since smaller ones would be dominated by theparasitic capacitances of other components, wiring orprinted circuit boards. Capacitance values of 1 pF or lower can be achieved by twisting two short lengths of insulated wire together.[12][13]
The capacitance of the Earth'sionosphere with respect to the ground is calculated to be about 1 F.[14]
The picofarad (pF) is sometimes colloquially pronounced as "puff" or "pic", as in "a ten-puff capacitor".[15] Similarly, "mic" (pronounced "mike") is sometimes used informally to signify microfarads.
Nonstandard abbreviations were and are often used. Farad has been abbreviated "f", "fd", and "Fd". For the prefix "micro-", whenthe Greek small letter "μ" or the legacy micro sign "μ" is not available (as on typewriters) or inconvenient to enter, it is often substituted with the similar-appearing "u" or "U", with little risk of confusion. It was also substituted with the similar-sounding "M" or "m"[citation needed], which can be confusing because M officially stands for 1,000,000, and m preferably stands for 1/1000. In texts prior to 1960, and on capacitor packages until more recently, "microfarad(s)" was abbreviated "mf"[citation needed] or "MFD" rather than the modern "μF". A 1940Radio Shack catalog listed every capacitor's rating in "Mfd.", from 0.000005 Mfd. (5 pF) to 50 Mfd. (50 μF).[16]
"Micromicrofarad" or "micro-microfarad" is an obsolete unit found in some older texts and labels, contains a nonstandardmetric double prefix. It is exactly equivalent to a picofarad (pF). It is abbreviated μμF, uuF, or (confusingly) "mmf"[citation needed], "MMF", or "MMFD".
Summary of obsolete or deprecated capacitance units or abbreviations: (upper/lower case variations are not shown)
Theabfarad (abbreviated abF) is an obsoleteCGS unit of capacitance, which corresponds to 109 farads (1 gigafarad, GF).[18]
Thestatfarad (abbreviated statF) is a rarely used CGS unit equivalent to the capacitance of a capacitor with a charge of 1statcoulomb across a potential difference of 1statvolt. It is 1/(10−5c2) farad, approximately 1.1126 picofarads. More commonly, the centimeter (cm) is used, which is equal to the statfarad.
^abThe International System of Units (SI) (8th ed.). Bureau International des Poids et Mesures (International Committee for Weights and Measures). 2006. p. 144.
^As names for units of various electrical quantities, Bright and Clark suggested "ohma" for voltage, "farad" for charge, "galvat" for current, and "volt" for resistance. See:
Latimer Clark and Sir Charles Bright (1861)"On the formation of standards of electrical quantity and resistance,"Report of the Thirty-first Meeting of the British Association for the Advancement of Science (Manchester, England: September 1861), section: Mathematics and Physics, pp. 37-38.
^Sir W. Thomson, etc. (1873)"First report of the Committee for the Selection and Nomenclature of Dynamical and Electrical Units,"Report of the 43rd Meeting of the British Association for the Advancement of Science (Bradford, September 1873), pp. 222-225. From p. 223: "The "ohm," as represented by the original standard coil, is approximately 109 C.G.S. units of resistance: the "volt" is approximately 108 C.G.S. units of electromotive force: and the "farad" is approximately 1/109 of the C.G.S. unit of capacity."
^(Anon.) (September 24, 1881)"The Electrical Congress,"The Electrician,7: 297. From p. 297: "7. The name farad will be given to the capacity defined by the condition that a coulomb in a farad gives a volt."
^Braga, Newton C. (2002).Robotics, Mechatronics, and Artificial Intelligence. Newnes. p. 21.ISBN0-7506-7389-3. Retrieved2008-09-17.Common measurement units are the microfarad (μF), representing 0.000,001 F; the nanofarad (nF), representing 0.000,000,001 F; and the picofarad (pF), representing 0.000,000,000,001 F.